
Vol.:(0123456789)

Journal of Computational Social Science
https://doi.org/10.1007/s42001-018-0019-8

1 3

RESEARCH ARTICLE

Hierarchy and the power‑law income distribution tail

Blair Fix1 

Received: 22 April 2018 / Accepted: 9 July 2018 
© Springer Nature Singapore Pte Ltd. 2018

Abstract
What explains the power-law distribution of top incomes? This paper tests the 
hypothesis that it is firm hierarchy that creates the power-law income distribu-
tion tail. Using the available case-study evidence on firm hierarchy, I create the 
first large-scale simulation of the hierarchical structure of the US private sector. 
Although not tuned to do so, this model reproduces the power-law scaling of top US 
incomes. I show that this is purely an effect of firm hierarchy. This raises the pos-
sibility that the ubiquity of power-law income distribution tails is due to the ubiquity 
of hierarchical organization in human societies.
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Introduction

In the late nineteenth century, Pareto [1] discovered that top incomes could be mod-
eled with a power-law distribution. This scaling behavior meant that the income dis-
tribution tail could be approximated by the simple probability function:

Here, p(x) is the probability of finding an individual (in the tail) with income x, 
c is a constant,1 and � is the scaling exponent, which captures the ‘fatness’ of the 
income distribution tail. The beauty of a power law is its simplicity. The important 

(1)p(x) =
c

x�
.
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properties of the distribution tail are captured by a single parameter—the power-law 
exponent. Since Pareto’s initial discovery, the power-law scaling of top incomes has 
been re-confirmed many times (for a non-exhaustive list, see [2–12]).

What causes this nearly universal behavior? Is there a universal generation mecha-
nism at work? Over the century since Pareto’s landmark discovery, many power-law 
generation mechanisms have been suggested to explain the scaling of top incomes. 
While the various mechanisms (reviewed below) differ in their mathematical proper-
ties, most are united by a shared focus on the stochastic growth of individual income.

This paper investigates a very different explanation for the power-law scaling of top 
incomes. I test the hypothesis that it is firm hierarchy that creates the power-law tail. This 
approach was first proposed by Lydall [13], who used a simple model to show that the 
hierarchical structure of firms could create a power-law distribution. At the time, Lydall’s 
work was largely speculative since little was known about the internal structure of firms. 
However, in the last two decades the empirical study of firm hierarchy has blossomed 
(for case studies, see [14–20]; for aggregate studies, see [21–29]). Enough evidence now 
exists that we can begin to explore the distributional consequences of hierarchy. To con-
duct this investigation, I use the existing case-study evidence to build a large-scale simu-
lation of firm hierarchy. This model generalizes the trends found in case-study firms to 
create the first simulation of the hierarchical structure of the US private sector.

I verify the accuracy of the hierarchy model, in two ways. I first compare the 
model’s income distribution to that of the USA. I find that the hierarchy model does 
a reasonably good job of reproducing the key properties of US income distribution. 
Importantly, the model produces (without tuning it to do so) a power-law tail that is 
statistically identical to US empirical data. Next, I test a key feature of the hierarchy 
model—that top-earning individuals should be concentrated in large firms. I find 
that the model’s prediction is consistent with the available US evidence.

Having established the model’s accuracy, I then use the model to investigate the dis-
tributional effects of hierarchy. I find that it is firm hierarchy alone (and not any of the 
other income dispersion factors included in the model) that is responsible for generating 
the power-law tail. To summarize, the hierarchy model suggests that it is firm hierarchy 
(and its associated properties) that creates the power-law scaling of top incomes. This 
finding has important implications for both the empirical and theoretical study of income 
distribution. On the empirical side, these results indicate that the income effects of hier-
archy are significant and need to be studied in more detail. On the theoretical side, these 
results suggest that hierarchy is a plausible mechanism for generating the power-law 
scaling of top incomes. This raises the possibility that the ubiquity of power-law income 
distribution tails is due to the ubiquity of hierarchical organization in human societies.

The paper is laid out as follows: “Power-law generation mechanisms” reviews 
the different mechanisms for generating power-law distributions. “A firm hierarchy 
model” outlines (in non-technical terms) the basic properties of the hierarchy model. 
(For a technical discussion, see the Online Appendices). “Testing the hierarchy 
model: macro predictions” and “Testing the hierarchy model: micro predictions” test 
the model against empirical data. “Isolating the distributional role of firm hierar-
chy” demonstrates that it is firm hierarchy (alone) that is responsible for creating the 
model’s power-law tail, and “How hierarchy generates the power-law tail analyzes 
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how this is achieved. I conclude, in “Discussion” and “Conclusions”, with a discus-
sion of the significance of these results and propose avenues for future research.

Power‑law generation mechanisms

I review here in non-technical terms the various mechanisms for generating power-
law distributions, with an emphasis on those that have been applied to modeling 
income. For a good technical review of these mechanisms, see [30–32]. One way 
to generate power laws is through a stochastic, multiplicative growth process. This 
mechanism was identified by Gibrat [33], but was first applied to income distribu-
tion by Champernowne [34], followed by many others [35–38]. The basic idea is 
that individual income is subjected to stochastic, multiplicative ‘shocks’. Under 
the condition that these multiplicative shocks are scale free (they do not depend on 
income size) and there is a minimum (reflective) lower bound on income, this pro-
cess will produce a power-law distribution of income.

Closely related to this process is the mechanism of ‘preferential attachment’, sometimes 
called the ‘rich get richer’. Developed independently by Yule [39], Simon [40], Price [41] 
and Barabasi and Albert [42], this process involves stochastic addition with conditional 
probability. It is most easily applicable to the distribution of wealth (not income). We 
imagine a society in which units of wealth are added at random. If the probability of an 
individual receiving an additional unit of wealth is proportional to his/her existing wealth, 
the result (after many iterations) will be a power-law distribution of wealth.

In both multiplicative growth and preferential attachment models, the source 
for stochastic changes in income/wealth is left unexplained. More recently, econo-
physicists have developed a more sophisticated class of model that attempts to 
explain these ‘shocks’ in terms of the random exchange of money between pairs 
of interacting agents [11, 43–51]. These ‘kinetic-exchange models’ draw explicitly 
on the statistical mechanics of gases. Agents exchange money much like gas par-
ticles exchange kinetic energy. Given certain assumptions about these interactions, 
kinetic-exchange models can produce a power-law distribution.

Lastly, a very simple way to produce a power law is to exponentially transform 
an exponential distribution. This is the mechanism by which Lydall [13] showed 
that firm hierarchy could create a power law. If a firm hierarchy has a constant ‘span 
of control’ (the number of subordinates controlled by each superior), then rela-
tive employment will decrease exponentially by rank. If, at the same time, income 
increases exponentially by rank, the result will be a power-law distribution of income. 
(For a technical discussion, see “How hierarchy generates the power-law tail”).

The advantage of this hierarchy mechanism is that it ties income to institutions. 
This means that the power-law distribution of top incomes is given an explicit institu-
tional basis—something that is important when it comes to policy discussions about 
how to reduce inequality. The disadvantage of the hierarchy mechanism is that rela-
tively little is known about firm hierarchical structure. This means that the distribu-
tional consequences of hierarchy are little understood. This paper aims to remedy this 
situation by using the available empirical data to build a large-scale hierarchical model 
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of the US private sector. This model generalizes the sparse firm hierarchy empirical 
data to allow the first quantitative study of the distributional effects of hierarchy.

A firm hierarchy model

The firm hierarchy model (herein the ‘hierarchy model’) is based on the hypothesis 
that human institutions are hierarchically organized, and that hierarchical rank plays 
a key role in determining income. The starting point for my approach is the seminal 
work of Simon [52] and Lydall [13]. In the late 1950s, Simon and Lydall both devel-
oped simple models that focused on the branching structure of firm hierarchies. The 
distinguishing feature of a branching hierarchy is that each superior has control over 
multiple subordinates (see Fig. 1).

Simon and Lydall both showed how branching hierarchical structure could 
explain regularities in income distribution. Simon used a simple hierarchical model 
of the firm to explain the observed scaling between CEO pay and firm sales [53]. 
Lydall showed how firm hierarchy could lead to a power-law distribution of top 
income (as discussed above). This paper draws on the work of Simon and Lydall, 
but updates their model in light of recent empirical work.

Both Simon and Lydall assumed a constant span of control within firms. (The 
span of control is the number of subordinates per superior). However, case-study 
evidence indicates that the span of control is not constant within firms, but instead 
tends to increase with hierarchical rank (see Online Appendix B). Simon and Lydall 
also assumed that the average income ratio between adjacent hierarchical ranks was 
constant. Again, case-study evidence suggests that this is not quite true. Like the 
span of control, the pay ratio between ranks also tends to increase with rank.

The key difference between my approach and that of Simon and Lydall is that I 
take full advantage of modern computational power to build a large-scale, stochastic 

Fig. 1   A branching hierarchy. This figure shows an idealized branching hierarchy in which each superior 
has two subordinates. This superior/subordinate ratio—often called the span of control—can be used to 
mathematically describe the hierarchy. Starting from the bottom rank, each consecutive rank decreases in 
size by a factor of the span of control. Unlike employment, we expect income to increase with hierarchi-
cal rank
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simulation. In contrast, Simon and Lydall used simple analytic methods. Simula-
tion allows investigation that would otherwise be impossible with a purely analytic 
approach.

Modeling goals and methods

Unlike the power-law generation models discussed in “Power-law generation mecha-
nisms”, my hierarchy model is not designed to produce a power law. Rather, it is 
designed to match the available firm-level evidence, with the intention of generaliz-
ing this evidence to investigate the distributional effects of firm hierarchy. The hope 
is that the resulting model will produce a power law that matches macro-level data, 
but there is no guarantee that it will.

In principle, we could directly investigate the income effects of firm hierarchy 
using empirical data (with no need for a model). However, the available firm-level 
evidence is too sparse to draw conclusions about the wider distributional role of firm 
hierarchy. The purpose of the hierarchy model is to investigate what is implied by 
the available firm-level data. The model takes the limited firm-hierarchy evidence 
that does exist and fits trends and parameterized distributions to it. I then use the 
model algorithm (outlined in detail in Online Appendices D and E) to extrapolate 
these trends to create a large-scale simulation of the economy. The resulting model 
is entirely dependent on the input, firm-level data. I do not tune the model to repro-
duce macro-level results. Therefore, the model output is purely what is implied by 
generalizing the trends found in input data.

The hierarchy model is built on a tripartite income-dispersion classification 
scheme that allows for three sources of income dispersion (see Fig. 2):

•	 Source 1: Income dispersion between hierarchical levels of each firm (inter-hier-
archical dispersion);

•	 Source 2: Income dispersion within hierarchical levels of each firm (intra-hierar-
chical dispersion);

•	 Source 3: Income dispersion between different firms (inter-firm dispersion).

Inter-firm and intra-hierarchical level dispersion are not explained by the model. (In 
the jargon of economic modeling, these dispersion sources are exogenous). In con-
trast, inter-hierarchical dispersion is partially explained by the model. It is explained 
in the sense that it is not ex nihilo—this dispersion does not come from nowhere. 
The model contains firms that have a specific hierarchical structure of employ-
ment and pay. However, the reason for this hierarchical structure is not explained 
by the model. Rather, hierarchical structure is determined from regressions on case-
study data, in conjunction with firm-level data from the Compustat and Execucomp 
databases.
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Modeling the USA

The model is designed to study the hierarchical structure of the US private sector as 
it was (on average) over the years 1992–2015. At the highest level of abstraction, the 
model has three parts. First, the model creates a firm-size distribution that dictates 
how many firms of a given size will exist. Second, for each firm in this distribu-
tion, the model creates a hierarchical structure. This means the model determines 
how many ranks will exist, and how many individuals will occupy each hierarchical 
rank. Lastly, the model uses each of the three dispersion sources (outlined above) to 
stochastically generate an income for every individual in every firm. I review here 
the most important elements of each step. A technical discussion can be found in the 
Online Appendices.

Step 1: Create a firm-size distribution The first step of the model is to generate a 
distribution of firm sizes. The available evidence suggests that national firm-size 
distributions can be modeled by a power law [54–56]. Under this assumption, the 

Fig. 2   A tripartite division of income distribution.This figure illustrates the income distribution grouping 
scheme used by the hierarchy model. The model allows for three sources of income dispersion. Inter-firm 
dispersion consists of differences in (average) pay between firms. Within each firm, there are two further 
sources of dispersion. Inter-hierarchical level dispersion consists of differences in (average) pay between 
hierarchical levels, while intra-hierarchical level dispersion consists of differences in pay within each 
hierarchical level



1 3

Journal of Computational Social Science	

probability of finding a firm of size x is proportional to x−� , where � is a constant. 
I model the US firm-size distribution with 1 million firms distributed according to 
a discrete power-law distribution with exponent � = 2.01 (see Online Appendix E). 
This may seem like the model uses one power law (the firm size distribution) to cre-
ate another (the distribution of income). However, this is not the case. Without hier-
archy, the model will not create a power-law distribution (see Fig. 6).

Step 2: Endow firms with hierarchical structure The hierarchy model captures only 
the aggregate hierarchical structure of firms. That is, I model the number of employ-
ees in each hierarchical level, not the exact chain of command. I base the model 
on a number of recent case studies that have documented the aggregate hierarchical 
structure of firms in various developed countries (see Online Appendix B). From 
this data, I make generalizations about the hierarchical structure of firms. The evi-
dence suggests that the span of control (the ratio between adjacent hierarchical lev-
els) increases exponentially with hierarchical rank.

For simplicity, all firms in the model have the same hierarchical structure—they 
are governed by the same span of control function. However, since there is a great 
deal of uncertainty in this function, I run the model many times. Each different 
model run uses a slightly different span of control function, determined by resam-
pling from case-study data. The result is that the hierarchical structure of firms var-
ies stochastically between different model runs, allowing us to capture uncertainty 
in the underlying empirical data. For more details, see Online Appendices D and E.

Step 3: Endow individuals with income After each firm has a hierarchical structure, 
the model assigns every individual an income. Because the model has three disper-
sion mechanisms, this step has three components, outlined below.

Step 3A: Generate inter-hierarchical level dispersion In the model, firm hierarchi-
cal pay is constructed from the bottom up. Starting from the bottom rank, I define 
a function that determines the rate at which pay increases by hierarchical rank. This 
function is informed by case-study data (see Online Appendix B). Unlike hierarchi-
cal employment structure, each modeled firm is given a different hierarchical pay 
structure. The process of assigning different hierarchical pay structure to each firm is 
informed by firm-level data in the Compustat database. (See Online Appendix C for 
a detailed discussion of the Compustat data).

Before running the full simulation, I fit the hierarchy model to Compustat data for 
real-world American firms. Compustat (in conjunction with Execucomp) provides 
data on CEO pay, average pay, and firm employment. Assuming the CEO occupies 
the top hierarchical level, we can use this information to model the hierarchical pay 
structure of each Compustat firm. Once this is complete, we have an indication of 
how hierarchical pay should vary across firms. The model’s main simulation is then 
informed by this variation. The result is a unique hierarchical pay structure for each 
firm. For more details, see Online Appendices D and E.

Step 3B: Generate inter-firm dispersion I create inter-firm income dispersion by 
varying (average) pay in the bottom hierarchical level of each firm. This variation 
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is informed by firm-level data in the Compustat database. As discussed in Step 3A, 
prior to running a full-scale simulation, I fit the model to firms in the Compustat 
database. After having fit hierarchical pay, I use this information to estimate how 
base-level pay varies across these firms. This variation then informs the model’s 
main simulation. For more details, see Online Appendices D and E.

Step 3C: Generate intra-hierarchical level dispersion The last step is to model the 
income dispersion within the hierarchical levels of each firm. The available case-
study evidence suggests that income dispersion within hierarchical levels is roughly 
constant across all hierarchical levels (see Online Appendix B). To simplify the 
model, I further assume that intra-hierarchical level dispersion is constant across all 
firms. Informed by case-study data, I use a single parameterized distribution to ran-
domly generate income dispersion within all hierarchical levels of every firm. For 
more details, see Online Appendices D and E.

Visualizing the US hierarchy model

To give an intuitive understanding of what the hierarchy model ‘looks’ like, Fig. 3 
shows a landscape view of the model’s structure. Each pyramid represents a differ-
ent hierarchically organized firm. The size of each pyramid corresponds to the num-
ber of employees, height represents hierarchical level, and color represents relative 
income.

This figure highlights the main characteristics of the model. The firm power-law 
distribution is clearly visible. The vast majority of firms are small, but there are a 
few behemoths. Inter-firm income dispersion and inter-hierarchical level income 
dispersion are also visible, while intra-hierarchical level income dispersion appears 
negligible. Lastly, top incomes are concentrated in upper hierarchical levels, and 

Fig. 3   A Landscape view of the hierarchy model. This figure visualizes the US hierarchy model as a 
landscape of three-dimensional firms. Each pyramid represents a single firm, with size indicating the 
number of employees and height corresponding to the number of hierarchical levels. If you look closely, 
you will see vertical lines corresponding to individuals. Income (relative to the median) is indicated by 
color. This visualization has 20,000 firms—a small sample of the actual model, which uses 1 million 
firms
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consequently occur mostly in larger firms. These facts, which are qualitatively vis-
ible here, become more clear as we analyze the model results in quantitative terms.

Testing the hierarchy model: macro predictions

The purpose of the hierarchy model is to study the hierarchical structure of the US 
private sector. The first step, then, is to make sure that the model produces realistic 
results. To that end, Fig. 4 compares the model’s aggregate income distribution to 
US empirical data. Although the model aims only to capture the private sector (not 
government), I compare the model’s results to macro-level data for the entire USA. 
I do this because the most reliable income distribution data (from the IRS) does not 
differentiate between the private and public sector.

Even though the model is an extrapolation from a limited set of data, it does a 
reasonably accurate job of reproducing the US distribution of income. Note, though, 
that the model underestimates US income inequality, both in terms of the Gini index 
(Fig. 4a) and the income share of the top 1% (Fig. 4b). What is the source of this dis-
crepancy? Looking at the income probability density in Fig. 4d, it appears that the 
US income distribution is more ‘bottom heavy’ than the model. The model produces 
too few extremely small incomes, relative to the US. This tendency is also evident in 
the cumulative distribution (Fig. 4f).

Why does this discrepancy occur? I demonstrate in Online Appendix F that the 
discrepancy can be removed by increasing the model’s inter-firm income dispersion. 
This suggests that the model’s underestimate of US inequality is due to an under-
estimate of inter-firm income dispersion. My guess is that this occurs because the 
model is based on Compustat firm data, which is not a representative sample of the 
US firm population. Compustat contains data for public firms only, and as a result is 
biased towards large firms. I suspect that a more representative firm sample would 
give greater inter-firm income dispersion. I include adjusted results in the Online 
Appendix to show that the model is capable of closely reproducing the important 
features of US income distribution. However, I do not use this adjusted data for any 
of the proceeding analysis. The purpose of the hierarchy model is to extrapolate 
empirical data, warts and all.

While the model slightly misrepresents the ‘body’ of US income distribution, it 
accurately reproduces the tail. This is evident in the complementary cumulative dis-
tribution (Fig. 4f) in the form of virtually identical model and empirical slopes in the 
right tail. This is important because it is the tail of the distribution (particularly, its 
power-law properties) that we are interested in studying. When plotted on a log–log 
scale (as in Fig. 4f), a power-law tail is visually evident as a straight line in the com-
plementary cumulative distribution.

Dating back to the work of Pareto [1], it has been common to estimate the 
power-law exponent by means of a linear regression on the complementary cumu-
lative distribution. However, Clauset et al. show that this approach is inaccurate 
[57]. Instead, I use the more accurate maximum-likelihood method (see Online 
Appendix A). Estimating the power-law exponent requires making a choice 
about where the ‘tail’ of the distribution begins. I define the tail as the top 1% of 
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incomes, a threshold that has been popularized by Piketty [58]. Figure 4c shows 
the results of fitting a power law to the top 1% of incomes (for methods, see 
Online Appendix A). Over many runs, the model produces a distribution tail with 
fitted power-law exponents that are very close to the exponents fitted to historical 
US data.
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To summarize, the hierarchy model produces an income distribution that is 
roughly consistent with the US distribution of income. In particular, the model 
closely reproduces the tail of the US distribution, including its power-law properties.

Testing the hierarchy model: micro predictions

When discussing the model visualization shown in Fig. 3, I noted that top-earning 
individuals are clustered at the tops of large firms. This is a defining feature of the 
hierarchy model. It occurs because income scales strongly with hierarchical rank. As 
a result, top earners are found at the tops of large firms, because these firms have the 
most hierarchical levels. To my knowledge, this prediction is not made by any other 
model of income distribution. It is important, therefore, that we put it to the test.

To test this prediction, I look at the firm-size distribution associated with top-
earning individuals. What does this mean? I take a sample of Americans with top 
incomes, and then record the firms associated with these individuals. I then look at 
the size distribution of these firms. I do the same with the model and then compare 
the results.

I conduct this test using data from the Forbes 400 and Execucomp. The Forbes 
400 list is a definitive ranking of the 400 richest Americans, and it provides the insti-
tutional source of each individual’s wealth. The caveat is that this list is a ranking 
by wealth, not income. I use the Forbes 400 as a proxy for top US incomes, under 
the assumption that wealth and income are strongly related. I supplement the Forbes 
400 data with the ‘Execucomp 500’, which is composed of the 500 top-paid US 
executives in the Execucomp database (in each year between 1992 and 2015). The 
advantage of the Execucomp 500 is that it is a ranking explicitly by income. The 
disadvantage is that we do not know if these 500 executives are actually the top-paid 
US individuals.

Before conducting this test, it is instructive to know what a null effect would look 
like. If there is absolutely no relation between income and firm membership, what 
sort of firm-size distribution should be associated with top incomes? It turns out that 
for the USA, we should expect a null effect to return a roughly log-uniform firm-size 
distribution (see Online Appendix G for a derivation).

Results for the Fortune 400 and Execucomp 500 firm-size distributions are shown 
in the main panel of Fig.  5. These density plots represent the size distribution of 
firms associated with the richest 400 Americans and the 500 top-paid executives in 
the Execucomp database (respectively). To better visualize the distribution, I plot 
the density of the logarithm of firm size. Under this transformation, the null-effect 
result will appear as a uniform distribution. From the evidence shown in Fig. 5, we 
can immediately conclude that the null effect is false. There is definitely a relation 
between top incomes/wealth and firm size. But is it the relation that is predicted by 
the hierarchy model?

To find out, I conduct the same analysis on the model. I select the model’s 500 
top-paid individuals and record the size distribution of associated firms. The results 
are shown in Fig. 5 as the ‘Model 500’. The model predicts a relation between top 
incomes and firm size that is very similar to the US empirical data. To be sure, the 
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model results are not identical to either the Forbes 400 or the Execucomp 500 distri-
butions. But, given the paucity of data on which the model is based (as well as the 
general uncertainty in the empirical analysis of top incomes), I count this result as 
a success. The model produces results that are roughly consistent with the US data.

Since the hierarchy model has three sources of income dispersion, we naturally 
want to know which of these sources is responsible for producing the results in 
Fig. 5. To answer this question, I use a counterfactual analysis. I create three dif-
ferent counterfactual models to supplement the original. Each counterfactual model 
isolates a single source of dispersion as it appears in the original model. The results 
of this counterfactual analysis are shown in the right-hand panels in Fig.  5. This 
analysis indicates that it is exclusively inter-hierarchical income dispersion that is 
responsible for associating top incomes with large institutions. The inter-hierarchical 
dispersion model produces results that are virtually identical to the original model. 
At the same time, inter-firm dispersion only and intra-hierarchical level dispersion 
only models produce drastically different results. (Note that with intra-hierarchical 
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tribution of firms associated with top-earning individuals in the USA and in the hierarchy model (of the 
USA). The ‘Forbes 400’ represents the size distribution of firms associated with (owned by) the wealthi-
est 400 Americans in the year 2014. The ‘Execucomp 500’ represents the size distribution of firms asso-
ciated with the 500 top-earning American executives (in each year from 1992 to 2015) in the Execucomp 
database. The ‘Model 500’ represents the size distribution of firms associated with the 500 top-earning 
individuals in the hierarchy model. Results for counterfactual models are shown on the right. Each coun-
terfactual model isolates a single source of income dispersion. The top panel shows a model with inter-
firm dispersion only, the middle shows a model with inter-hierarchical dispersion only, and the bottom 
shows a model with intra-hierarchical level dispersion only. In all plots, I also show the log-uniform dis-
tribution (dotted line), which is the null-effect prediction (i.e., no relation between firm membership and 
income). For sources and methods, see Online Appendix A
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dispersion only, we recover the null effect. Why? In this model, firms play no part in 
determining income).

To summarize, the hierarchy model correctly predicts that top-paid individuals 
should be associated with firms that are far larger than those of the general popula-
tion. Moreover, the model indicates that this effect is purely a result of inter-hierar-
chical pay dispersion.

Isolating the distributional role of firm hierarchy

Having established that the hierarchy model gives credible results, I now use it to 
isolate the distributional effects of firm hierarchy. In particular, I am interested in 
determining whether or not it is hierarchy that shapes the income distribution tail. 
As in Fig. 5, I isolate the effects of hierarchy using a counterfactual analysis. I create 
three different counterfactual models of the USA, each containing only one source 
of income dispersion. By comparing these counterfactual models to the original 
model, we can determine how each dispersion source affects income distribution.

Figure 6 shows the results of this analysis. Here, I plot the income distribution 
(the probability density) of the original and counterfactual models. I use a log–log 
transformation to more clearly illustrate the distribution tail. This visualization 
allows us to see how each factor contributes to the original model’s distribution of 
income. To interpret this plot, look at the vertical distance between the original and 
counterfactual models. The closer a particular counterfactual model comes to the 
original model, the more important that dispersion factor is for shaping income dis-
tribution at the point in question.

The results of this analysis are unambiguous. A clear division exists between the 
body and tail of the distribution. The body of the distribution is almost completely 
determined by inter-firm dispersion, while the tail of the distribution is almost com-
pletely determined by inter-hierarchical dispersion. Intra-hierarchical dispersion 
amounts to negligible noise. The inset panel in Fig.  6 shows the fitted power-law 
exponent for the top 1% of incomes in the original and inter-hierarchical dispersion 
model. This confirms what is visually obvious in the main plot—the tail of the inter-
hierarchical dispersion model is virtually identical to that of the original.

To summarize, the counterfactual analysis indicates that it is inter-hierarchical 
pay-scaling (alone) that is responsible for generating the model’s income distri-
bution tail. This suggests that it is hierarchy that is responsible for generating the 
power-law tail, and that the effects of hierarchy become important in the top 1% of 
incomes.

How hierarchy generates the power‑law tail

How does hierarchy create the (approximate) power-law distribution of top incomes? 
The basic mechanism was theorized by Lydall [13]. It relies on the following contra-
puntal exponential tendencies of hierarchical organization:
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1.	 Hierarchical organization causes the share of employment to decrease exponen-
tially with hierarchical rank.

2.	 Hierarchical pay structure causes income to increase exponentially with rank.

These two opposing tendencies interact to produce a power-law distribution of income 
(in the tail). This mechanism is a specific case of a more general method. A power law 
will be created any time we exponentially transform an exponential distribution [32].

The proof works as follows. Suppose we have some quantity y that is exponentially 
distributed (here a is a negative constant):

(2)p(y) ∼ eay.
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Fig. 6   Isolating the effects of hierarchy with counterfactual models. This figure compares the original 
hierarchy model of the USA to three different counterfactual models. Each counterfactual model contains 
only one of the three sources of income dispersion. The main plot shows the income probability density 
of each model, plotted using a log–log transformation (these results show the average distribution over 
many iterations). To interpret this plot, look at the vertical distance between each counterfactual model’s 
distribution and that of the original. The smaller the distance, the greater is the distributional role played 
by that dispersion factor at the point in question. The shaded region indicates the top 1% of incomes (in 
the original model). The inset panel shows power-law exponents fitted to the top 1% of incomes in the 
original and inter-hierarchical dispersion model
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In the case of hierarchical class structure, this would be the probability of finding 
someone with a hierarchical rank y. Suppose that we have another variable, x, that is 
also exponentially related to y:

In the context of hierarchical organization, x would be income, which increases 
exponentially with rank. We want to know how income (x) is distributed. To find 
out, we use the change of variable formula to get fx , the density function of x:

We let fy = eay . Since x = eby , we note that y(x) = 1

b
ln x and y�(x) = 1∕bx . Substitut-

ing into the change of variable formula gives:

Thus, the variate x (income) has a power-law distribution with exponent � = a∕b − 1. 
To reiterate, hierarchical organization creates a power-law distribution because 

of two contrapuntal, exponential tendencies: (1) employment tends to decrease 
exponentially with rank; and (2) income tends to increase exponentially with rank. 
Figure  7 illustrates this contrapuntal behavior in the hierarchy model. Figure  7a 
shows the aggregate hierarchical employment structure of the model. As expected, 
the hierarchical employment distribution has a bottom-heavy pyramid shape. The 
vast majority of people occupy low ranks and only a tiny elite have high rank. The 
inset panel highlights the exponential nature of this distribution. Figure 7b shows the 
model’s aggregate hierarchical pay structure. As expected, hierarchical pay has an 
inverted pyramid shape. The average income at the top of the hierarchy dwarfs that 
at the bottom. Again, the inset plot highlights the exponential nature of this relation.

Note that neither employment nor pay has a purely exponential relation with rank. 
This is a design feature of the model, stemming from case-study evidence. In the 
case-study data, income tends to increase supra-exponentially (faster than an expo-
nential) with rank. Conversely, employment tends to decrease supra-exponentially 
with rank (see Online Appendix B for details). In any case, when we combine these 
two supra-exponential tendencies, the result still seems to be (roughly) a power-law 
distribution of income in the model’s tail.

While the above derivation highlights the basic power-law generation mecha-
nism, the hierarchy model’s inner workings involve some added complexity. First, 
the above derivation assumes that rank (y) is a continuous variable. In the model, 
rank is a discrete variable, which would result in a discontinuous distribution of pay 
(x) in Eq. 5. Lydall noted this in his original derivation, and posited that a process 
of ‘blurring’ would occur (due to stochastic differences in pay between firms) that 
would make the resulting distribution continuous [13]. In this regard, Lydall’s intui-
tion appears to be correct.

Figure 8 shows how the various discrete hierarchical ranks contribute to pro-
duce the continuous power-law tail. Each panel shows the distribution of income 

(3)x = eby.

(4)fx = fy
(
y(x)

)
⋅
|| y

�(x) ||.

(5)fx = e
a

b
ln x

⋅

1

bx
=

1

b
xa∕b−1.
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Fig. 7   The hierarchy model’s contrapuntal exponential tendencies. This figure shows the two contrapun-
tal exponential tendencies associated with the hierarchy model’s class structure. a The model’s aggregate 
distribution of employment by hierarchical rank. The bottom-heavy shape results from firm hierarchical 
structure (in conjunction with the firm-size distribution). The inset graph shows the logarithm of employ-
ment share, plotted against rank. A pure exponential function would appear as a straight line. The curve 
in this relation indicates that employment declines with rank slightly faster than an exponential function. 
b The model’s mean pay by hierarchical rank (normalized so that the base level =1). The inset graph 
shows the logarithm of income plotted against rank. The curve in this relation indicates that income 
increases with rank slightly faster than an exponential function
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of a specific hierarchical rank in relation to the model’s aggregate income dis-
tribution. (The rank-specific distributions are normalized so that the cumulative 
density of all ranks sums to one.) In this plot, the exponential growth of income 
with rank appears as a horizontal shift in the income distribution of each rank. 
At the same time, each successive rank has exponentially fewer members, which 
appears as a downward shift in the income distribution. When the contributions 
of all ranks are summed, the result is an approximate power-law distribution of 
top incomes. As Lydall suspected, a complex blurring process occurs (between 
ranks) that smooths out what would otherwise be a discontinuous distribution.

Discussion

Whenever two or more theories describe the same phenomenon, we need to deter-
mine if they are consistent with one another, or if they are mutually inconsist-
ent. Thus, we should ask—is the hierarchy model’s explanation of the power-law 
distribution of top incomes at odds with the stochastic growth models described 
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Fig. 8   The model’s distribution of income by hierarchal rank. This figure shows the distribution of 
income for each hierarchical rank in the hierarchy model. In each panel, a rank-specific income distribu-
tion (color) is compared to the model’s aggregate income distribution (black). The rank-specific distribu-
tions are normalized so that cumulative density of all ranks sums to one. The shaded region indicates the 
top 1% of incomes (in the aggregate model distribution). To interpret this plot, look at how closely each 
rank-specific distribution comes to the aggregate distribution. The closer the two are, the greater is the 
rank’s contribution to income distribution at that point. The power-law right tail (evident as the straight 
line in the aggregate distribution) is jointly created by ranks five and up
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in “Power-law generation mechanisms”? Or are the two approaches mutually 
consistent?

The primary difference between the two approaches is that the hierarchy model 
is static, while the stochastic models are dynamic. The hierarchy model begins 
with the observation that firms have a hierarchical structure, and that this (static) 
structure could explain the distribution of income at a point in time. The hierarchy 
model says nothing about the dynamics of individual income, but instead focuses on 
institutional structure. In contrast, the stochastic approach begins with the observa-
tion that individual incomes change over time. Since income distribution represents 
a snapshot of these changing incomes, it must be possible to explain income dis-
tribution in terms of the dynamics of individual income. The static and dynamic 
approaches explain the power-law distribution of top incomes from very different 
angles. Therefore, I see no fundamental clash between the hierarchy model and 
exogenous stochastic growth models in the tradition of Champernowne [34]. More 
research is needed to determine how the two approaches are related.

That being said, the stochastic growth and firm hierarchy models each have very 
different implications for how we should study (and potentially alleviate) inequal-
ity. Stochastic growth models put the focus on isolated individuals. This makes it 
difficult to connect inequality to the wider political and socioeconomic setting (the 
search for such a connection is a major goal of many economists and sociologists 
[59–71]). In contrast, the hierarchy model suggests that the income distribution 
power-law tail is an outcome of the internal compensation policies of firms. This 
puts the focus squarely on firms and how they remunerate their employees as a func-
tion of hierarchical rank. This perspective opens the door to future research that 
connects the internal pay policies of firms to the wider distribution of income (and 
potentially to government policy).

Conclusions

In 1959, when Lydall [13] first proposed that firm hierarchy could create a power-
law distribution of income, his hypothesis was largely speculative. At the time, lit-
tle was known about the internal pay structure of firms. Nearly 60 years later, data 
on firm hierarchical structure is still scarce, but enough evidence exists that we can 
begin to investigate the distributional effects of firm hierarchy. This paper has pre-
sented a first attempt at doing so.

The key finding is that the empirically informed hierarchy model is capable of 
reproducing the power-law scaling of top US incomes, while at the same time accu-
rately connecting top-earning individuals to large firms. Importantly, the model indi-
cates that it is hierarchical pay-scaling alone that is responsible for these results. 
Of course, the hierarchy model’s results are contingent on the input data, which is 
limited. While I have made every effort to incorporate uncertainty in the underlying 
case-study data, results may change when new data comes along. Further research 
is needed to verify these results and see if they can be replicated in other countries.

Uncertainty aside, the hierarchy model suggests that the ubiquitous power-
law scaling of top incomes may be a result of the ubiquitous use of hierarchical 
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organization in human societies. This implies that when we study the tail of the dis-
tribution of income, we may be studying the effects of social hierarchy.
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