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Abstract
What explains the power-law distribution of top incomes? This paper tests the 
hypothesis that it is firm hierarchy that creates the power-law income distribu-
tion tail. Using the available case-study evidence on firm hierarchy, I create the 
first large-scale simulation of the hierarchical structure of the US private sector. 
Although not tuned to do so, this model reproduces the power-law scaling of top US 
incomes. I show that this is purely an effect of firm hierarchy. This raises the pos-
sibility that the ubiquity of power-law income distribution tails is due to the ubiquity 
of hierarchical organization in human societies.
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Introduction

In the late nineteenth century, Pareto [1] discovered that top incomes could be mod-
eled with a power-law distribution. This scaling behavior meant that the income dis-
tribution tail could be approximated by the simple probability function:

Here, p(x) is the probability of finding an individual (in the tail) with income x, 
c is a constant,1 and � is the scaling exponent, which captures the ‘fatness’ of the 
income distribution tail. The beauty of a power law is its simplicity. The important 

(1)p(x) =
c

x�
.
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properties of the distribution tail are captured by a single parameter—the power-law 
exponent. Since Pareto’s initial discovery, the power-law scaling of top incomes has 
been re-confirmed many times (for a non-exhaustive list, see [2–12]).

What causes this nearly universal behavior? Is there a universal generation mecha-
nism at work? Over the century since Pareto’s landmark discovery, many power-law 
generation mechanisms have been suggested to explain the scaling of top incomes. 
While the various mechanisms (reviewed below) differ in their mathematical proper-
ties, most are united by a shared focus on the stochastic growth of individual income.

This paper investigates a very different explanation for the power-law scaling of top 
incomes. I test the hypothesis that it is firm hierarchy that creates the power-law tail. This 
approach was first proposed by Lydall [13], who used a simple model to show that the 
hierarchical structure of firms could create a power-law distribution. At the time, Lydall’s 
work was largely speculative since little was known about the internal structure of firms. 
However, in the last two decades the empirical study of firm hierarchy has blossomed 
(for case studies, see [14–20]; for aggregate studies, see [21–29]). Enough evidence now 
exists that we can begin to explore the distributional consequences of hierarchy. To con-
duct this investigation, I use the existing case-study evidence to build a large-scale simu-
lation of firm hierarchy. This model generalizes the trends found in case-study firms to 
create the first simulation of the hierarchical structure of the US private sector.

I verify the accuracy of the hierarchy model, in two ways. I first compare the 
model’s income distribution to that of the USA. I find that the hierarchy model does 
a reasonably good job of reproducing the key properties of US income distribution. 
Importantly, the model produces (without tuning it to do so) a power-law tail that is 
statistically identical to US empirical data. Next, I test a key feature of the hierarchy 
model—that top-earning individuals should be concentrated in large firms. I find 
that the model’s prediction is consistent with the available US evidence.

Having established the model’s accuracy, I then use the model to investigate the dis-
tributional effects of hierarchy. I find that it is firm hierarchy alone (and not any of the 
other income dispersion factors included in the model) that is responsible for generating 
the power-law tail. To summarize, the hierarchy model suggests that it is firm hierarchy 
(and its associated properties) that creates the power-law scaling of top incomes. This 
finding has important implications for both the empirical and theoretical study of income 
distribution. On the empirical side, these results indicate that the income effects of hier-
archy are significant and need to be studied in more detail. On the theoretical side, these 
results suggest that hierarchy is a plausible mechanism for generating the power-law 
scaling of top incomes. This raises the possibility that the ubiquity of power-law income 
distribution tails is due to the ubiquity of hierarchical organization in human societies.

The paper is laid out as follows: “Power-law generation mechanisms” reviews 
the different mechanisms for generating power-law distributions. “A firm hierarchy 
model” outlines (in non-technical terms) the basic properties of the hierarchy model. 
(For a technical discussion, see the Online Appendices). “Testing the hierarchy 
model: macro predictions” and “Testing the hierarchy model: micro predictions” test 
the model against empirical data. “Isolating the distributional role of firm hierar-
chy” demonstrates that it is firm hierarchy (alone) that is responsible for creating the 
model’s power-law tail, and “How hierarchy generates the power-law tail analyzes 
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how this is achieved. I conclude, in “Discussion” and “Conclusions”, with a discus-
sion of the significance of these results and propose avenues for future research.

Power‑law generation mechanisms

I review here in non-technical terms the various mechanisms for generating power-
law distributions, with an emphasis on those that have been applied to modeling 
income. For a good technical review of these mechanisms, see [30–32]. One way 
to generate power laws is through a stochastic, multiplicative growth process. This 
mechanism was identified by Gibrat [33], but was first applied to income distribu-
tion by Champernowne [34], followed by many others [35–38]. The basic idea is 
that individual income is subjected to stochastic, multiplicative ‘shocks’. Under 
the condition that these multiplicative shocks are scale free (they do not depend on 
income size) and there is a minimum (reflective) lower bound on income, this pro-
cess will produce a power-law distribution of income.

Closely related to this process is the mechanism of ‘preferential attachment’, sometimes 
called the ‘rich get richer’. Developed independently by Yule [39], Simon [40], Price [41] 
and Barabasi and Albert [42], this process involves stochastic addition with conditional 
probability. It is most easily applicable to the distribution of wealth (not income). We 
imagine a society in which units of wealth are added at random. If the probability of an 
individual receiving an additional unit of wealth is proportional to his/her existing wealth, 
the result (after many iterations) will be a power-law distribution of wealth.

In both multiplicative growth and preferential attachment models, the source 
for stochastic changes in income/wealth is left unexplained. More recently, econo-
physicists have developed a more sophisticated class of model that attempts to 
explain these ‘shocks’ in terms of the random exchange of money between pairs 
of interacting agents [11, 43–51]. These ‘kinetic-exchange models’ draw explicitly 
on the statistical mechanics of gases. Agents exchange money much like gas par-
ticles exchange kinetic energy. Given certain assumptions about these interactions, 
kinetic-exchange models can produce a power-law distribution.

Lastly, a very simple way to produce a power law is to exponentially transform 
an exponential distribution. This is the mechanism by which Lydall [13] showed 
that firm hierarchy could create a power law. If a firm hierarchy has a constant ‘span 
of control’ (the number of subordinates controlled by each superior), then rela-
tive employment will decrease exponentially by rank. If, at the same time, income 
increases exponentially by rank, the result will be a power-law distribution of income. 
(For a technical discussion, see “How hierarchy generates the power-law tail”).

The advantage of this hierarchy mechanism is that it ties income to institutions. 
This means that the power-law distribution of top incomes is given an explicit institu-
tional basis—something that is important when it comes to policy discussions about 
how to reduce inequality. The disadvantage of the hierarchy mechanism is that rela-
tively little is known about firm hierarchical structure. This means that the distribu-
tional consequences of hierarchy are little understood. This paper aims to remedy this 
situation by using the available empirical data to build a large-scale hierarchical model 
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of the US private sector. This model generalizes the sparse firm hierarchy empirical 
data to allow the first quantitative study of the distributional effects of hierarchy.

A firm hierarchy model

The firm hierarchy model (herein the ‘hierarchy model’) is based on the hypothesis 
that human institutions are hierarchically organized, and that hierarchical rank plays 
a key role in determining income. The starting point for my approach is the seminal 
work of Simon [52] and Lydall [13]. In the late 1950s, Simon and Lydall both devel-
oped simple models that focused on the branching structure of firm hierarchies. The 
distinguishing feature of a branching hierarchy is that each superior has control over 
multiple subordinates (see Fig. 1).

Simon and Lydall both showed how branching hierarchical structure could 
explain regularities in income distribution. Simon used a simple hierarchical model 
of the firm to explain the observed scaling between CEO pay and firm sales [53]. 
Lydall showed how firm hierarchy could lead to a power-law distribution of top 
income (as discussed above). This paper draws on the work of Simon and Lydall, 
but updates their model in light of recent empirical work.

Both Simon and Lydall assumed a constant span of control within firms. (The 
span of control is the number of subordinates per superior). However, case-study 
evidence indicates that the span of control is not constant within firms, but instead 
tends to increase with hierarchical rank (see Online Appendix B). Simon and Lydall 
also assumed that the average income ratio between adjacent hierarchical ranks was 
constant. Again, case-study evidence suggests that this is not quite true. Like the 
span of control, the pay ratio between ranks also tends to increase with rank.

The key difference between my approach and that of Simon and Lydall is that I 
take full advantage of modern computational power to build a large-scale, stochastic 

Fig. 1   A branching hierarchy. This figure shows an idealized branching hierarchy in which each superior 
has two subordinates. This superior/subordinate ratio—often called the span of control—can be used to 
mathematically describe the hierarchy. Starting from the bottom rank, each consecutive rank decreases in 
size by a factor of the span of control. Unlike employment, we expect income to increase with hierarchi-
cal rank
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simulation. In contrast, Simon and Lydall used simple analytic methods. Simula-
tion allows investigation that would otherwise be impossible with a purely analytic 
approach.

Modeling goals and methods

Unlike the power-law generation models discussed in “Power-law generation mecha-
nisms”, my hierarchy model is not designed to produce a power law. Rather, it is 
designed to match the available firm-level evidence, with the intention of generaliz-
ing this evidence to investigate the distributional effects of firm hierarchy. The hope 
is that the resulting model will produce a power law that matches macro-level data, 
but there is no guarantee that it will.

In principle, we could directly investigate the income effects of firm hierarchy 
using empirical data (with no need for a model). However, the available firm-level 
evidence is too sparse to draw conclusions about the wider distributional role of firm 
hierarchy. The purpose of the hierarchy model is to investigate what is implied by 
the available firm-level data. The model takes the limited firm-hierarchy evidence 
that does exist and fits trends and parameterized distributions to it. I then use the 
model algorithm (outlined in detail in Online Appendices D and E) to extrapolate 
these trends to create a large-scale simulation of the economy. The resulting model 
is entirely dependent on the input, firm-level data. I do not tune the model to repro-
duce macro-level results. Therefore, the model output is purely what is implied by 
generalizing the trends found in input data.

The hierarchy model is built on a tripartite income-dispersion classification 
scheme that allows for three sources of income dispersion (see Fig. 2):

•	 Source 1: Income dispersion between hierarchical levels of each firm (inter-hier-
archical dispersion);

•	 Source 2: Income dispersion within hierarchical levels of each firm (intra-hierar-
chical dispersion);

•	 Source 3: Income dispersion between different firms (inter-firm dispersion).

Inter-firm and intra-hierarchical level dispersion are not explained by the model. (In 
the jargon of economic modeling, these dispersion sources are exogenous). In con-
trast, inter-hierarchical dispersion is partially explained by the model. It is explained 
in the sense that it is not ex nihilo—this dispersion does not come from nowhere. 
The model contains firms that have a specific hierarchical structure of employ-
ment and pay. However, the reason for this hierarchical structure is not explained 
by the model. Rather, hierarchical structure is determined from regressions on case-
study data, in conjunction with firm-level data from the Compustat and Execucomp 
databases.
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Modeling the USA

The model is designed to study the hierarchical structure of the US private sector as 
it was (on average) over the years 1992–2015. At the highest level of abstraction, the 
model has three parts. First, the model creates a firm-size distribution that dictates 
how many firms of a given size will exist. Second, for each firm in this distribu-
tion, the model creates a hierarchical structure. This means the model determines 
how many ranks will exist, and how many individuals will occupy each hierarchical 
rank. Lastly, the model uses each of the three dispersion sources (outlined above) to 
stochastically generate an income for every individual in every firm. I review here 
the most important elements of each step. A technical discussion can be found in the 
Online Appendices.

Step 1: Create a firm-size distribution The first step of the model is to generate a 
distribution of firm sizes. The available evidence suggests that national firm-size 
distributions can be modeled by a power law [54–56]. Under this assumption, the 

Fig. 2   A tripartite division of income distribution.This figure illustrates the income distribution grouping 
scheme used by the hierarchy model. The model allows for three sources of income dispersion. Inter-firm 
dispersion consists of differences in (average) pay between firms. Within each firm, there are two further 
sources of dispersion. Inter-hierarchical level dispersion consists of differences in (average) pay between 
hierarchical levels, while intra-hierarchical level dispersion consists of differences in pay within each 
hierarchical level
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probability of finding a firm of size x is proportional to x−� , where � is a constant. 
I model the US firm-size distribution with 1 million firms distributed according to 
a discrete power-law distribution with exponent � = 2.01 (see Online Appendix E). 
This may seem like the model uses one power law (the firm size distribution) to cre-
ate another (the distribution of income). However, this is not the case. Without hier-
archy, the model will not create a power-law distribution (see Fig. 6).

Step 2: Endow firms with hierarchical structure The hierarchy model captures only 
the aggregate hierarchical structure of firms. That is, I model the number of employ-
ees in each hierarchical level, not the exact chain of command. I base the model 
on a number of recent case studies that have documented the aggregate hierarchical 
structure of firms in various developed countries (see Online Appendix B). From 
this data, I make generalizations about the hierarchical structure of firms. The evi-
dence suggests that the span of control (the ratio between adjacent hierarchical lev-
els) increases exponentially with hierarchical rank.

For simplicity, all firms in the model have the same hierarchical structure—they 
are governed by the same span of control function. However, since there is a great 
deal of uncertainty in this function, I run the model many times. Each different 
model run uses a slightly different span of control function, determined by resam-
pling from case-study data. The result is that the hierarchical structure of firms var-
ies stochastically between different model runs, allowing us to capture uncertainty 
in the underlying empirical data. For more details, see Online Appendices D and E.

Step 3: Endow individuals with income After each firm has a hierarchical structure, 
the model assigns every individual an income. Because the model has three disper-
sion mechanisms, this step has three components, outlined below.

Step 3A: Generate inter-hierarchical level dispersion In the model, firm hierarchi-
cal pay is constructed from the bottom up. Starting from the bottom rank, I define 
a function that determines the rate at which pay increases by hierarchical rank. This 
function is informed by case-study data (see Online Appendix B). Unlike hierarchi-
cal employment structure, each modeled firm is given a different hierarchical pay 
structure. The process of assigning different hierarchical pay structure to each firm is 
informed by firm-level data in the Compustat database. (See Online Appendix C for 
a detailed discussion of the Compustat data).

Before running the full simulation, I fit the hierarchy model to Compustat data for 
real-world American firms. Compustat (in conjunction with Execucomp) provides 
data on CEO pay, average pay, and firm employment. Assuming the CEO occupies 
the top hierarchical level, we can use this information to model the hierarchical pay 
structure of each Compustat firm. Once this is complete, we have an indication of 
how hierarchical pay should vary across firms. The model’s main simulation is then 
informed by this variation. The result is a unique hierarchical pay structure for each 
firm. For more details, see Online Appendices D and E.

Step 3B: Generate inter-firm dispersion I create inter-firm income dispersion by 
varying (average) pay in the bottom hierarchical level of each firm. This variation 
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is informed by firm-level data in the Compustat database. As discussed in Step 3A, 
prior to running a full-scale simulation, I fit the model to firms in the Compustat 
database. After having fit hierarchical pay, I use this information to estimate how 
base-level pay varies across these firms. This variation then informs the model’s 
main simulation. For more details, see Online Appendices D and E.

Step 3C: Generate intra-hierarchical level dispersion The last step is to model the 
income dispersion within the hierarchical levels of each firm. The available case-
study evidence suggests that income dispersion within hierarchical levels is roughly 
constant across all hierarchical levels (see Online Appendix B). To simplify the 
model, I further assume that intra-hierarchical level dispersion is constant across all 
firms. Informed by case-study data, I use a single parameterized distribution to ran-
domly generate income dispersion within all hierarchical levels of every firm. For 
more details, see Online Appendices D and E.

Visualizing the US hierarchy model

To give an intuitive understanding of what the hierarchy model ‘looks’ like, Fig. 3 
shows a landscape view of the model’s structure. Each pyramid represents a differ-
ent hierarchically organized firm. The size of each pyramid corresponds to the num-
ber of employees, height represents hierarchical level, and color represents relative 
income.

This figure highlights the main characteristics of the model. The firm power-law 
distribution is clearly visible. The vast majority of firms are small, but there are a 
few behemoths. Inter-firm income dispersion and inter-hierarchical level income 
dispersion are also visible, while intra-hierarchical level income dispersion appears 
negligible. Lastly, top incomes are concentrated in upper hierarchical levels, and 

Fig. 3   A Landscape view of the hierarchy model. This figure visualizes the US hierarchy model as a 
landscape of three-dimensional firms. Each pyramid represents a single firm, with size indicating the 
number of employees and height corresponding to the number of hierarchical levels. If you look closely, 
you will see vertical lines corresponding to individuals. Income (relative to the median) is indicated by 
color. This visualization has 20,000 firms—a small sample of the actual model, which uses 1 million 
firms
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consequently occur mostly in larger firms. These facts, which are qualitatively vis-
ible here, become more clear as we analyze the model results in quantitative terms.

Testing the hierarchy model: macro predictions

The purpose of the hierarchy model is to study the hierarchical structure of the US 
private sector. The first step, then, is to make sure that the model produces realistic 
results. To that end, Fig. 4 compares the model’s aggregate income distribution to 
US empirical data. Although the model aims only to capture the private sector (not 
government), I compare the model’s results to macro-level data for the entire USA. 
I do this because the most reliable income distribution data (from the IRS) does not 
differentiate between the private and public sector.

Even though the model is an extrapolation from a limited set of data, it does a 
reasonably accurate job of reproducing the US distribution of income. Note, though, 
that the model underestimates US income inequality, both in terms of the Gini index 
(Fig. 4a) and the income share of the top 1% (Fig. 4b). What is the source of this dis-
crepancy? Looking at the income probability density in Fig. 4d, it appears that the 
US income distribution is more ‘bottom heavy’ than the model. The model produces 
too few extremely small incomes, relative to the US. This tendency is also evident in 
the cumulative distribution (Fig. 4f).

Why does this discrepancy occur? I demonstrate in Online Appendix F that the 
discrepancy can be removed by increasing the model’s inter-firm income dispersion. 
This suggests that the model’s underestimate of US inequality is due to an under-
estimate of inter-firm income dispersion. My guess is that this occurs because the 
model is based on Compustat firm data, which is not a representative sample of the 
US firm population. Compustat contains data for public firms only, and as a result is 
biased towards large firms. I suspect that a more representative firm sample would 
give greater inter-firm income dispersion. I include adjusted results in the Online 
Appendix to show that the model is capable of closely reproducing the important 
features of US income distribution. However, I do not use this adjusted data for any 
of the proceeding analysis. The purpose of the hierarchy model is to extrapolate 
empirical data, warts and all.

While the model slightly misrepresents the ‘body’ of US income distribution, it 
accurately reproduces the tail. This is evident in the complementary cumulative dis-
tribution (Fig. 4f) in the form of virtually identical model and empirical slopes in the 
right tail. This is important because it is the tail of the distribution (particularly, its 
power-law properties) that we are interested in studying. When plotted on a log–log 
scale (as in Fig. 4f), a power-law tail is visually evident as a straight line in the com-
plementary cumulative distribution.

Dating back to the work of Pareto [1], it has been common to estimate the 
power-law exponent by means of a linear regression on the complementary cumu-
lative distribution. However, Clauset et al. show that this approach is inaccurate 
[57]. Instead, I use the more accurate maximum-likelihood method (see Online 
Appendix A). Estimating the power-law exponent requires making a choice 
about where the ‘tail’ of the distribution begins. I define the tail as the top 1% of 
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incomes, a threshold that has been popularized by Piketty [58]. Figure 4c shows 
the results of fitting a power law to the top 1% of incomes (for methods, see 
Online Appendix A). Over many runs, the model produces a distribution tail with 
fitted power-law exponents that are very close to the exponents fitted to historical 
US data.
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To summarize, the hierarchy model produces an income distribution that is 
roughly consistent with the US distribution of income. In particular, the model 
closely reproduces the tail of the US distribution, including its power-law properties.

Testing the hierarchy model: micro predictions

When discussing the model visualization shown in Fig. 3, I noted that top-earning 
individuals are clustered at the tops of large firms. This is a defining feature of the 
hierarchy model. It occurs because income scales strongly with hierarchical rank. As 
a result, top earners are found at the tops of large firms, because these firms have the 
most hierarchical levels. To my knowledge, this prediction is not made by any other 
model of income distribution. It is important, therefore, that we put it to the test.

To test this prediction, I look at the firm-size distribution associated with top-
earning individuals. What does this mean? I take a sample of Americans with top 
incomes, and then record the firms associated with these individuals. I then look at 
the size distribution of these firms. I do the same with the model and then compare 
the results.

I conduct this test using data from the Forbes 400 and Execucomp. The Forbes 
400 list is a definitive ranking of the 400 richest Americans, and it provides the insti-
tutional source of each individual’s wealth. The caveat is that this list is a ranking 
by wealth, not income. I use the Forbes 400 as a proxy for top US incomes, under 
the assumption that wealth and income are strongly related. I supplement the Forbes 
400 data with the ‘Execucomp 500’, which is composed of the 500 top-paid US 
executives in the Execucomp database (in each year between 1992 and 2015). The 
advantage of the Execucomp 500 is that it is a ranking explicitly by income. The 
disadvantage is that we do not know if these 500 executives are actually the top-paid 
US individuals.

Before conducting this test, it is instructive to know what a null effect would look 
like. If there is absolutely no relation between income and firm membership, what 
sort of firm-size distribution should be associated with top incomes? It turns out that 
for the USA, we should expect a null effect to return a roughly log-uniform firm-size 
distribution (see Online Appendix G for a derivation).

Results for the Fortune 400 and Execucomp 500 firm-size distributions are shown 
in the main panel of Fig.  5. These density plots represent the size distribution of 
firms associated with the richest 400 Americans and the 500 top-paid executives in 
the Execucomp database (respectively). To better visualize the distribution, I plot 
the density of the logarithm of firm size. Under this transformation, the null-effect 
result will appear as a uniform distribution. From the evidence shown in Fig. 5, we 
can immediately conclude that the null effect is false. There is definitely a relation 
between top incomes/wealth and firm size. But is it the relation that is predicted by 
the hierarchy model?

To find out, I conduct the same analysis on the model. I select the model’s 500 
top-paid individuals and record the size distribution of associated firms. The results 
are shown in Fig. 5 as the ‘Model 500’. The model predicts a relation between top 
incomes and firm size that is very similar to the US empirical data. To be sure, the 
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model results are not identical to either the Forbes 400 or the Execucomp 500 distri-
butions. But, given the paucity of data on which the model is based (as well as the 
general uncertainty in the empirical analysis of top incomes), I count this result as 
a success. The model produces results that are roughly consistent with the US data.

Since the hierarchy model has three sources of income dispersion, we naturally 
want to know which of these sources is responsible for producing the results in 
Fig. 5. To answer this question, I use a counterfactual analysis. I create three dif-
ferent counterfactual models to supplement the original. Each counterfactual model 
isolates a single source of dispersion as it appears in the original model. The results 
of this counterfactual analysis are shown in the right-hand panels in Fig.  5. This 
analysis indicates that it is exclusively inter-hierarchical income dispersion that is 
responsible for associating top incomes with large institutions. The inter-hierarchical 
dispersion model produces results that are virtually identical to the original model. 
At the same time, inter-firm dispersion only and intra-hierarchical level dispersion 
only models produce drastically different results. (Note that with intra-hierarchical 
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tribution of firms associated with top-earning individuals in the USA and in the hierarchy model (of the 
USA). The ‘Forbes 400’ represents the size distribution of firms associated with (owned by) the wealthi-
est 400 Americans in the year 2014. The ‘Execucomp 500’ represents the size distribution of firms asso-
ciated with the 500 top-earning American executives (in each year from 1992 to 2015) in the Execucomp 
database. The ‘Model 500’ represents the size distribution of firms associated with the 500 top-earning 
individuals in the hierarchy model. Results for counterfactual models are shown on the right. Each coun-
terfactual model isolates a single source of income dispersion. The top panel shows a model with inter-
firm dispersion only, the middle shows a model with inter-hierarchical dispersion only, and the bottom 
shows a model with intra-hierarchical level dispersion only. In all plots, I also show the log-uniform dis-
tribution (dotted line), which is the null-effect prediction (i.e., no relation between firm membership and 
income). For sources and methods, see Online Appendix A
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dispersion only, we recover the null effect. Why? In this model, firms play no part in 
determining income).

To summarize, the hierarchy model correctly predicts that top-paid individuals 
should be associated with firms that are far larger than those of the general popula-
tion. Moreover, the model indicates that this effect is purely a result of inter-hierar-
chical pay dispersion.

Isolating the distributional role of firm hierarchy

Having established that the hierarchy model gives credible results, I now use it to 
isolate the distributional effects of firm hierarchy. In particular, I am interested in 
determining whether or not it is hierarchy that shapes the income distribution tail. 
As in Fig. 5, I isolate the effects of hierarchy using a counterfactual analysis. I create 
three different counterfactual models of the USA, each containing only one source 
of income dispersion. By comparing these counterfactual models to the original 
model, we can determine how each dispersion source affects income distribution.

Figure 6 shows the results of this analysis. Here, I plot the income distribution 
(the probability density) of the original and counterfactual models. I use a log–log 
transformation to more clearly illustrate the distribution tail. This visualization 
allows us to see how each factor contributes to the original model’s distribution of 
income. To interpret this plot, look at the vertical distance between the original and 
counterfactual models. The closer a particular counterfactual model comes to the 
original model, the more important that dispersion factor is for shaping income dis-
tribution at the point in question.

The results of this analysis are unambiguous. A clear division exists between the 
body and tail of the distribution. The body of the distribution is almost completely 
determined by inter-firm dispersion, while the tail of the distribution is almost com-
pletely determined by inter-hierarchical dispersion. Intra-hierarchical dispersion 
amounts to negligible noise. The inset panel in Fig.  6 shows the fitted power-law 
exponent for the top 1% of incomes in the original and inter-hierarchical dispersion 
model. This confirms what is visually obvious in the main plot—the tail of the inter-
hierarchical dispersion model is virtually identical to that of the original.

To summarize, the counterfactual analysis indicates that it is inter-hierarchical 
pay-scaling (alone) that is responsible for generating the model’s income distri-
bution tail. This suggests that it is hierarchy that is responsible for generating the 
power-law tail, and that the effects of hierarchy become important in the top 1% of 
incomes.

How hierarchy generates the power‑law tail

How does hierarchy create the (approximate) power-law distribution of top incomes? 
The basic mechanism was theorized by Lydall [13]. It relies on the following contra-
puntal exponential tendencies of hierarchical organization:
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1.	 Hierarchical organization causes the share of employment to decrease exponen-
tially with hierarchical rank.

2.	 Hierarchical pay structure causes income to increase exponentially with rank.

These two opposing tendencies interact to produce a power-law distribution of income 
(in the tail). This mechanism is a specific case of a more general method. A power law 
will be created any time we exponentially transform an exponential distribution [32].

The proof works as follows. Suppose we have some quantity y that is exponentially 
distributed (here a is a negative constant):

(2)p(y) ∼ eay.
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Fig. 6   Isolating the effects of hierarchy with counterfactual models. This figure compares the original 
hierarchy model of the USA to three different counterfactual models. Each counterfactual model contains 
only one of the three sources of income dispersion. The main plot shows the income probability density 
of each model, plotted using a log–log transformation (these results show the average distribution over 
many iterations). To interpret this plot, look at the vertical distance between each counterfactual model’s 
distribution and that of the original. The smaller the distance, the greater is the distributional role played 
by that dispersion factor at the point in question. The shaded region indicates the top 1% of incomes (in 
the original model). The inset panel shows power-law exponents fitted to the top 1% of incomes in the 
original and inter-hierarchical dispersion model
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In the case of hierarchical class structure, this would be the probability of finding 
someone with a hierarchical rank y. Suppose that we have another variable, x, that is 
also exponentially related to y:

In the context of hierarchical organization, x would be income, which increases 
exponentially with rank. We want to know how income (x) is distributed. To find 
out, we use the change of variable formula to get fx , the density function of x:

We let fy = eay . Since x = eby , we note that y(x) = 1

b
ln x and y�(x) = 1∕bx . Substitut-

ing into the change of variable formula gives:

Thus, the variate x (income) has a power-law distribution with exponent � = a∕b − 1. 
To reiterate, hierarchical organization creates a power-law distribution because 

of two contrapuntal, exponential tendencies: (1) employment tends to decrease 
exponentially with rank; and (2) income tends to increase exponentially with rank. 
Figure  7 illustrates this contrapuntal behavior in the hierarchy model. Figure  7a 
shows the aggregate hierarchical employment structure of the model. As expected, 
the hierarchical employment distribution has a bottom-heavy pyramid shape. The 
vast majority of people occupy low ranks and only a tiny elite have high rank. The 
inset panel highlights the exponential nature of this distribution. Figure 7b shows the 
model’s aggregate hierarchical pay structure. As expected, hierarchical pay has an 
inverted pyramid shape. The average income at the top of the hierarchy dwarfs that 
at the bottom. Again, the inset plot highlights the exponential nature of this relation.

Note that neither employment nor pay has a purely exponential relation with rank. 
This is a design feature of the model, stemming from case-study evidence. In the 
case-study data, income tends to increase supra-exponentially (faster than an expo-
nential) with rank. Conversely, employment tends to decrease supra-exponentially 
with rank (see Online Appendix B for details). In any case, when we combine these 
two supra-exponential tendencies, the result still seems to be (roughly) a power-law 
distribution of income in the model’s tail.

While the above derivation highlights the basic power-law generation mecha-
nism, the hierarchy model’s inner workings involve some added complexity. First, 
the above derivation assumes that rank (y) is a continuous variable. In the model, 
rank is a discrete variable, which would result in a discontinuous distribution of pay 
(x) in Eq. 5. Lydall noted this in his original derivation, and posited that a process 
of ‘blurring’ would occur (due to stochastic differences in pay between firms) that 
would make the resulting distribution continuous [13]. In this regard, Lydall’s intui-
tion appears to be correct.

Figure 8 shows how the various discrete hierarchical ranks contribute to pro-
duce the continuous power-law tail. Each panel shows the distribution of income 

(3)x = eby.

(4)fx = fy
(
y(x)

)
⋅
|| y

�(x) ||.

(5)fx = e
a

b
ln x

⋅

1

bx
=

1

b
xa∕b−1.
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Fig. 7   The hierarchy model’s contrapuntal exponential tendencies. This figure shows the two contrapun-
tal exponential tendencies associated with the hierarchy model’s class structure. a The model’s aggregate 
distribution of employment by hierarchical rank. The bottom-heavy shape results from firm hierarchical 
structure (in conjunction with the firm-size distribution). The inset graph shows the logarithm of employ-
ment share, plotted against rank. A pure exponential function would appear as a straight line. The curve 
in this relation indicates that employment declines with rank slightly faster than an exponential function. 
b The model’s mean pay by hierarchical rank (normalized so that the base level =1). The inset graph 
shows the logarithm of income plotted against rank. The curve in this relation indicates that income 
increases with rank slightly faster than an exponential function
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of a specific hierarchical rank in relation to the model’s aggregate income dis-
tribution. (The rank-specific distributions are normalized so that the cumulative 
density of all ranks sums to one.) In this plot, the exponential growth of income 
with rank appears as a horizontal shift in the income distribution of each rank. 
At the same time, each successive rank has exponentially fewer members, which 
appears as a downward shift in the income distribution. When the contributions 
of all ranks are summed, the result is an approximate power-law distribution of 
top incomes. As Lydall suspected, a complex blurring process occurs (between 
ranks) that smooths out what would otherwise be a discontinuous distribution.

Discussion

Whenever two or more theories describe the same phenomenon, we need to deter-
mine if they are consistent with one another, or if they are mutually inconsist-
ent. Thus, we should ask—is the hierarchy model’s explanation of the power-law 
distribution of top incomes at odds with the stochastic growth models described 
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Fig. 8   The model’s distribution of income by hierarchal rank. This figure shows the distribution of 
income for each hierarchical rank in the hierarchy model. In each panel, a rank-specific income distribu-
tion (color) is compared to the model’s aggregate income distribution (black). The rank-specific distribu-
tions are normalized so that cumulative density of all ranks sums to one. The shaded region indicates the 
top 1% of incomes (in the aggregate model distribution). To interpret this plot, look at how closely each 
rank-specific distribution comes to the aggregate distribution. The closer the two are, the greater is the 
rank’s contribution to income distribution at that point. The power-law right tail (evident as the straight 
line in the aggregate distribution) is jointly created by ranks five and up
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in “Power-law generation mechanisms”? Or are the two approaches mutually 
consistent?

The primary difference between the two approaches is that the hierarchy model 
is static, while the stochastic models are dynamic. The hierarchy model begins 
with the observation that firms have a hierarchical structure, and that this (static) 
structure could explain the distribution of income at a point in time. The hierarchy 
model says nothing about the dynamics of individual income, but instead focuses on 
institutional structure. In contrast, the stochastic approach begins with the observa-
tion that individual incomes change over time. Since income distribution represents 
a snapshot of these changing incomes, it must be possible to explain income dis-
tribution in terms of the dynamics of individual income. The static and dynamic 
approaches explain the power-law distribution of top incomes from very different 
angles. Therefore, I see no fundamental clash between the hierarchy model and 
exogenous stochastic growth models in the tradition of Champernowne [34]. More 
research is needed to determine how the two approaches are related.

That being said, the stochastic growth and firm hierarchy models each have very 
different implications for how we should study (and potentially alleviate) inequal-
ity. Stochastic growth models put the focus on isolated individuals. This makes it 
difficult to connect inequality to the wider political and socioeconomic setting (the 
search for such a connection is a major goal of many economists and sociologists 
[59–71]). In contrast, the hierarchy model suggests that the income distribution 
power-law tail is an outcome of the internal compensation policies of firms. This 
puts the focus squarely on firms and how they remunerate their employees as a func-
tion of hierarchical rank. This perspective opens the door to future research that 
connects the internal pay policies of firms to the wider distribution of income (and 
potentially to government policy).

Conclusions

In 1959, when Lydall [13] first proposed that firm hierarchy could create a power-
law distribution of income, his hypothesis was largely speculative. At the time, lit-
tle was known about the internal pay structure of firms. Nearly 60 years later, data 
on firm hierarchical structure is still scarce, but enough evidence exists that we can 
begin to investigate the distributional effects of firm hierarchy. This paper has pre-
sented a first attempt at doing so.

The key finding is that the empirically informed hierarchy model is capable of 
reproducing the power-law scaling of top US incomes, while at the same time accu-
rately connecting top-earning individuals to large firms. Importantly, the model indi-
cates that it is hierarchical pay-scaling alone that is responsible for these results. 
Of course, the hierarchy model’s results are contingent on the input data, which is 
limited. While I have made every effort to incorporate uncertainty in the underlying 
case-study data, results may change when new data comes along. Further research 
is needed to verify these results and see if they can be replicated in other countries.

Uncertainty aside, the hierarchy model suggests that the ubiquitous power-
law scaling of top incomes may be a result of the ubiquitous use of hierarchical 
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organization in human societies. This implies that when we study the tail of the dis-
tribution of income, we may be studying the effects of social hierarchy.
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Sources and Methods 2

A Sources and Methods

Sources are listed by the figure in which they appear.

Sources for Figure 4 (Modeled Income Distribution vs. US Data)

Complementary Cumulative Distribution

The US complementary cumulative distribution is calculated from data in the IRS
Individual Complete Report (Publication 1304), Table 1.1, from 1996 to 2015.

Cumulative Distribution

The US cumulative distribution is calculated from data in the IRS Individual
Complete Report (Publication 1304), Table 1.1, from 1996 to 2015.

Gini Index

I use two sources for the US Gini index. The first source is the US Current Popu-
lation Survey, Table PINC-08 (available from the US Census) over the years 1994
to 2015. The second source is the IRS Individual Complete Report (Publication
1304), Table 1.1, from 1996 to 2015. I estimate the Gini index by constructing a
Lorenz curve from the reported cumulative frequency data. R code implement-
ing this method is available in the Supplementary Material.

The Census and IRS data are not mutually consistent. IRS data is based
on tax units, not individuals. The advantage of the IRS data is that it is an
administrative record. Current Population Survey (CPS) data, on the other hand,
is obtained by interview. The advantage of the CPS data is that it explicitly counts
individuals. The disadvantage is that “there is a tendency in household surveys
for respondents to under report their income” [1].

Lorenz Curve

The US Lorenz curve is calculated from data in the IRS Individual Complete Report
(Publication 1304), Table 1.1, from 1996 to 2015.

Power Law Exponents

I estimate the power law exponent of the income distribution tail using the max-
imum likelihood method. US empirical data comes from the IRS Individual

https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-08.html
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
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Table 1: Power Law Cutoff Boundaries in US Data

Year Percentile α

1996 0.987 2.92
1997 0.985 2.89
1998 0.996 2.58
1999 0.996 2.58
2000 0.995 2.54
2001 0.996 2.63
2002 0.996 2.67
2003 0.996 2.65
2004 0.995 2.59
2005 0.994 2.54
2006 0.993 2.54
2007 0.993 2.54
2008 0.994 2.66
2009 0.995 2.78
2010 0.994 2.73
2011 0.994 2.74
2012 0.992 2.64
2013 0.993 2.74
2014 0.992 2.70
2015 0.991 2.72

Complete Report (Publication 1304), Table 1.1. Since this data is reported in
binned form, I use the binned log-likelihood equation developed by Virkar and
Clauset [2]:

L = n(α− 1) · ln bmin +
k
∑

i=min

hi ln
�

bi
(1−α) − bi+1

(1−α)
�

(1)

Here α is the power law exponent, bi and bi+1 are consecutive bin bound-
aries, hi and hi+1 are consecutive bin counts, k is the number of bins, and n
is the sum of bin counts above bmin (the cutoff point for the power law). The
best-fit exponent α is the value that maximizes the log-likelihood function (L ).
Since there is no closed-form solution to this maximization problem, I solve for
α numerically. To determine the power law exponent for the top 1% of incomes
in each year, I set the power law cutoff boundary (bmin) to the empirical bin that
is closest to the 99th percentile. Results are shown in Table 1.

https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
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To find the power law exponent in modeled data, I use the following maxi-
mum likelihood estimator:

α̂= 1+ n

�

n
∑

i

ln
x i

xmin

�−1

(2)

Here α̂ is the best-fit power law exponent, x i is the ith data point, xmin is the
lower bound of the power law, and n is the number of data points above xmin. To
ensure compatibility with empirical power law estimates, I estimate the model’s
power law exponent using the empirical cutoff values. For each model run, I set
xmin by randomly selecting a percentile value from Table 1.

All data and code are available in the Supplementary Material.

Probability Density Function

I estimate the normalized probability density function for US income using data
from Current Population Survey Table PINC-08 (available from the US Census)
over the years 1994 to 2015. This table reports binned data.

To estimate the normalized probability density function in each year, I first
create a simulated income distribution (I) using bin midpoints. Each midpoint
income Mi is repeated Fi times, where Fi is the frequency count for the ith bin.
I then normalize I by dividing all elements by the mean income Ī .

I=

�

M1
×F1· · · · · ·, M2

×F2· · · · · ·, ... , Mi
×Fi· · · · · ·

�

Ī
(3)

Lastly, I fit the simulated income distribution (I) with a numerical density func-
tion. R code implementing this method is available in the Supplementary Mate-
rial.

Top 1% Income Share

Sources for top 1% income share data are shown in Table 2.

https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-08.html
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Table 2: US Top 1% Income Share Sources

Series Info Source

sfainc992j Pre-tax factor income | equal-split adults | Share | Adults | share of total (ratio) [3]

sfainc996i Pre-tax factor income | individuals | Share | 20 to 64 | share of total (ratio) [3]

sfainc999i Pre-tax factor income | individuals | Share | All Ages | share of total (ratio) [3]

sfainc999t Pre-tax factor income | tax unit | Share | All Ages | share of total (ratio) [3]

sfiinc992j Fiscal income | equal-split adults | Share | Adults | share of total (ratio) [3]

sfiinc992t Fiscal income | tax unit | Share | Adults | share of total (ratio) [3]

sfiinc996i Fiscal income | individuals | Share | 20 to 64 | share of total (ratio) [3]

sfiinc999i Fiscal income | individuals | Share | All Ages | share of total (ratio) [3]

sfiinc999t Fiscal income | tax unit | Share | All Ages | share of total (ratio) [3]

sptinc992j Pre-tax national income | equal-split adults | Share | Adults | share of total (ratio) [3]

sptinc996i Pre-tax national income | individuals | Share | 20 to 64 | share of total (ratio) [3]

sptinc999i Pre-tax national income | individuals | Share | All Ages | share of total (ratio) [3]

sptinc999t Pre-tax national income | tax unit | Share | All Ages | share of total (ratio) [3]

sfiinc_z_US World Top Incomes Legacy Series [4]

lakner Calculated from micro data [5]

piketty_book_no_kgains Legacy data from Capital in the 21st Century [6]

piketty_book_with_kgains Legacy data from Capital in the 21st Century [6]
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Sources for Figure 5 (Firm Size Distributions Associated With Top In-
comes and Wealth)

Forbes 400 data is from the year 2014. Firm size data was collected by the
author. For public companies, firm size data comes from Compustat. For private
companies, data comes from firm websites and annual reports. The Execucomp
500 consists of the 500 top paid US executives in the Execucomp database in
each year from 1992 to 2015.
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B Case-Study Firms

In this section I review the case-study evidence that informs the hierarchy model.
Table 3 summarizes the source data, while Figure 1 shows the hierarchical em-
ployment and pay structure of these firms. The firms remain anonymous, and
are named after the authors of the case-study papers. Although the exact shapes
vary, all the firms in this sample have a roughly pyramidal employment structure
and inverse pyramid pay structure.

Figure 2 dissects these trends to allow further analysis. Figure 2A shows how
the span of control (the employment ratio between adjacent ranks) changes as a
function of hierarchical level. In these firms, the span of control is not constant,
but instead tends to increase with hierarchical level. Similarly, Figure 2B shows
the ratio of mean pay between adjacent levels. Like the span of control, the pay
ratio tends to increase with hierarchical level. Lastly, Figure 2C shows income
dispersion within hierarchical ranks of each firm (measured with the Gini index).
Note that income dispersion within levels is quite low and there is no evidence
of a trend.

In addition to case-study data of single firms, several studies have reported
the aggregate hierarchical structure of a sample of firms (see Table 4 and Figure
4). The data from these firms reveals the same general trends as the case studies.
However, the aggregate data is less useful because these studies capture only the
top few hierarchical ranks within firms.

The case-study data plays a central role in the hierarchical model developed
in this paper. From the case-study evidence, I propose the following ‘stylized’
facts about firm employment and pay structure:

1. The span of control tends to increase with hierarchical level.
2. The inter-level pay ratio tends to increase with hierarchical level.
3. Intra-level income inequality is approximately constant across all hierar-

chical levels.

The case-study evidence informs the basic structure of the model, and also
some of its key parameters. The ‘shape’ of modeled firm hierarchies is deter-
mined from the fitted span-of-control trend shown in Figure 2A. Figure 3 shows
the idealized employment hierarchy that is implied by case-study data. Error
bars indicate uncertainty, calculated using the bootstrap resampling method. Pa-
rameters for intra-level income dispersion are determined from the mean of data
in Figure 2C. For a detailed discussion of the model algorithm and parameter-
fitting procedure, see Sections D and E.
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A.  Firm Hierarchical Employment Structure

B.  Firm Hierarchical Pay Structure

Figure 1: The Hierarchical ‘Shape’ of Six Different Case-Study Firms

This figure shows the hierarchical employment and pay structure of six different case-
study firms. Panel A shows the hierarchical structure of employment, while Panel B
shows the hierarchical pay structure.
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Grund       
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Morais & Kakabadse       

Treble et al.       

Figure 2: Analyzing the Hierarchical Structure of Case-Study Firms

This figure shows data from 7 case-study firms. Panel A shows how the span of con-
trol (the subordinate-to-superior employment ratio between adjacent levels) varies with
hierarchical level. Note the log scale on the y-axis. Panel B shows how the superior-
to-subordinate pay ratio varies with hierarchical level. In Panels A and B, the x-axis
corresponds to the upper hierarchical level in each corresponding ratio. Panel C shows
the Gini index of income inequality within each hierarchical level. Different case-study
firms are indicated by color, with names indicating the study author. Note that hori-
zontal ‘jitter’ has been introduced in all three plots in order to better visualize the data
(hierarchical level is a discrete variable). The lines in Panels A and B indicate exponen-
tial regressions, while the line in Panel C shows the average Gini index. Grey regions
correspond to the 95% confidence intervals.
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Table 3: Summary of Firm Case Studies

Source Years Country Firm Levels
Span of
Control

Level
Income

Level Income
Dispersion

Audas [7] 1992 Britain All ! !

Baker [8] 1969-1985 United States Management ! ! !

Dohmen [9] 1987-1996 Netherlands All ! ! !

Grund [10] 1995 & 1998 US and Germany All ! !

Lima [11] 1991-1995 Portugal All ! ! !

Morais∗ [12] 2007-2010 Undisclosed All ! !

Treble [13] 1989-1994 Britain All ! ! !

Notes: This table shows metadata for the firm case studies displayed in Fig. 2. The ‘Firm Levels’ column refers to the
portion of the firm that is included in the study. ‘Management’ indicates that only management levels were studied.
∗For the analysis conducted in this paper I discard (as an outlier) the bottom hierarchical level in Morais and Kak-

abadse’s data.
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Figure 3: Idealized Firm Employment Hierarchy Implied by Case Studies

This figure shows the idealized firm hierarchy that is implied by fitting trends to case-
study data (Fig. 2A). Error bars show the uncertainty in the hierarchical shape, calcu-
lated using a bootstrap resample of case-study data.
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B.  Pay Ratio By Hierarchical Level
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Figure 4: Aggregate Studies of Firm Hierarchical Structure

This figure shows data from 9 different aggregate firm studies. Most of these studies
only survey the top several hierarchical levels in each firm. Because of this, I order
hierarchical levels from the top down, where the CEO is level 0, the level below is -1, etc.
Panel A shows how the span of control (the employment ratio between adjacent levels)
relates to hierarchical level. Panel B shows how the pay ratio between adjacent levels
varies with hierarchical level. In both plots, horizontal ‘jitter’ has been introduced in
order to better visualize the data (hierarchical level is a discrete variable). Grey regions
correspond to the 95% confidence interval for regressions.
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Table 4: Summary of Firm Aggregate Studies

Source Years Number of Firms Country Firm Levels Span of Control Level Income

Ariga [14] 1981-1989 unknown Japan All ! !

Bell [15] 2001-2010 552 United Kingdom Top 3 ! !

Eriksson [16] 1992-1995 210 Denmark Management ! !

Heyman [17] 1991,1995 560 Sweden Management ! !

Leonard [18] 1981-1985 439 United States Top 9 !

Main [19] 1980–1984 200 United States Top 4 !

Mueller [20] 2004-2013 880 United Kingdom All ! !

Rajan [21] 1986-1998 261 United States Top 2 !

Tao [22] 1986-1998 8101 Taiwan Top 2 !

Notes: This table shows metadata for the aggregate studies displayed in Fig. 4. The ‘Firm Levels’ column refers to the
portion of the firm that is included in the study. ‘Top 2’, ‘Top 3’, etc. indicates that only the top n levels were included in
the study (where the top level is the CEO).
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C Compustat Data

This paper makes extensive use of the Compustat and Execucomp databases.
Compustat contains data for most publicly traded US companies, while Exe-
cucomp contains data for executive compensation. Three key statistics used
throughout this paper are calculated from this data: firm mean income, the CEO-
to-average-employee pay ratio, and the capitalist income fraction of executives. I
discuss the data and methods used for these calculations in the following sec-
tions.

C.1 Firm Mean Income

Firm mean income is calculated by dividing total staff expenses (Compustat Se-
ries XLR) by total employment (Compustat Series EMP):

Firm Mean Income=
Total Staff Expenses
Total Employment

(4)

C.2 CEO Pay Ratio

Throughout this paper, I use the term ‘CEO’ to refer to the executive at the top of
the corporate hierarchy. I identify CEOs using the titles contained in the Execu-
comp series TITLEANN. Because titles vary greatly by company, identifying the
top executive is not always a simple task. While a manual search would be most
accurate, this is unrealistic given that the Execucomp database contains over
275 000 entries. Instead, I use the following three-step algorithm to identify the
‘CEO’:

1. Find all executives whose title contains one or more of the words in the
‘CEO Titles’ list (Table 5).

2. Of these executives, take the subset whose title does not contain any of
the words in the ‘Subordinate Titles’ list (Table 5).

3. If this search returns more than one executive per firm per year, chose
the executive with the highest pay.

After identifying the CEO (and matching CEO pay data with firm data con-
tained in the Compustat database), I calculate the CEO pay ratio using the fol-
lowing equation:

CEO Pay Ratio=
CEO Pay

Firm Mean Income
(5)
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Table 5: Titles Used to Identify the ‘CEO’

CEO Titles: Subordinate Titles

president vp
chairman v-p
CEO cfo
Chief Executive Officer vice
chmn chief finance officer

president of
coo
division
div
president-
group president
chairmain-
co-president
deputy chairman
pres.-
Chief Financial Officer

Notes: This table shows the Execucomp titles used to identify the CEO of each
company. CEOs are deemed to be those whose title contains words in the left
column, but not those in the right column. Titles such as ‘president-’ and ‘pres-
ident of’ are included in the subordinate list because they typically refer to a
president of a division with the company: i.e. ‘president of western division’ or
‘president-western hemisphere’.

CEO pay ratio and firm mean income data are collectively available for roughly
6000 firm-year observations over the period 1992-2016. I use this data to ‘tune’
my hierarchical model of the firm (see Section E) . Figure 5 shows selected sum-
mary statistics of this dataset.
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Figure 5: Selected Statistics from the Firm Sample Used for Model Tuning

This figure shows statistics for the Compustat firm sample used to tune my hierarchical
model. Panel A shows the number of firms in the sample over time, Panel B the average
firm size, and Panel C the share of US employment held by these firms. Panel D shows
the logarithmic distribution of firm size, and Panel E shows the logarithmic distribution
of the CEO pay ratio. Panel F shows the mean CEO pay ratio of all firms over time. Panel
G shows the logarithmic distribution of normalized mean pay (mean pay divided by the
average pay of the firm sample in each year). Panel H shows the ratio of mean pay in
the Compustat sample relative to the US average (calculated from BEA Table 1.12 by
dividing the sum of employee and proprietor income by the number of workers in BEA
Table 6.8C-D. Panel I shows the Gini index of firm mean pay over time.
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D Hierarchy Model Equations

In this section, I outline the mathematics underlying my hierarchical model of
the firm. The model assumptions, outlined below, are based on the stylized facts
gleaned from the real-world firm data in section B.

1. Firms are hierarchically structured, with a span of control that increases
exponentially with hierarchical level.

2. The ratio of mean pay between adjacent hierarchical levels increases ex-
ponentially with hierarchical level.

3. Intra-hierarchical-level income is lognormally distributed and constant across
all levels.

Using these assumptions, I first develop an algorithm that describes the hi-
erarchical employment within a model firm, followed by an algorithm that de-
scribes the hierarchical pay structure.

Table 6: Notation

Symbol Definition
a span of control parameter 1
b span of control parameter 2
C CEO to average employee pay ratio
E employment
F cumulative distribution function
G Gini index of inequality
h hierarchical level
Ī average income
µ lognormal location parameter
n number of hierarchical levels in a firm
p pay ratio between adjacent hierarchical levels
r pay-scaling parameter
s span of control
σ lognormal scale parameter
T total for firm
↓ round down to nearest integer
∏

product of a sequence of numbers
∑

sum of a sequence of numbers
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D.1 Generating the Employment Hierarchy

To generate the hierarchical structure of a firm, we begin by defining the span
of control (s) as the ratio of employment (E) between two consecutive hierar-
chical levels (h), where h = 1 is the bottom hierarchical level. It simplifies later
calculations if we define the span of control in level 1 as s = 1. This leads to the
following piecewise function:

sh ≡







1 if h= 1
Eh−1

Eh
if h≥ 2

(6)

Based on our empirical findings in Section B, we assume that the span of
control is not constant; rather it increases exponentially with hierarchical level.
I model the span of control as a function of hierarchical level (sh) with a simple
exponential function, where a and b are free parameters:

sh =

(

1 if h= 1

a · ebh if h≥ 2
(7)

As one moves up the hierarchy, employment in each consecutive level (Eh)
decreases by 1/sh. This yields Eq. 8, a recursive method for calculating Eh. Since
we want employment to be whole numbers, we round down to the nearest inte-
ger (notated by ↓). By repeatedly substituting Eq. 8 into itself, we can obtain a
non-recursive formula (Eq. 9). In product notation, Eq. 9 can be written as Eq.
10.

Eh =↓
Eh−1

sh
for h> 1 (8)

Eh =↓ E1 ·
1
s2
·

1
s3
· ... ·

1
sh

(9)

Eh =↓ E1

h
∏

i=1

1
si

(10)

Total employment in the whole firm (ET ) is the sum of employment in all
hierarchical levels. Defining n as the total number of hierarchical levels, we get
Eq. 11, which in summation notation, becomes Eq. 12.

ET = E1 + E2 + ...+ En (11)
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ET =
n
∑

h=1

Eh (12)

In practice, n is not known beforehand, so we define it using Eq. 10. We
progressively increase h until we reach a level of zero employment. The highest
level n will be the hierarchical level directly below the first hierarchical level with
zero employment:

n= {h | Eh ≥ 1 and Eh+1 = 0} (13)

To summarize, the hierarchical employment structure of our model firm is
determined by 3 free parameters: the span of control parameters a and b, and
base-level employment E1. Code for this hierarchy generation algorithm can be
found in the C++ header files hierarchy.h and exponents.h, located in the
Supplementary Material.

D.2 Generating Hierarchical Pay

To model the hierarchical pay structure of a firm, we begin by defining the inter-
hierarchical pay-ratio (ph) as the ratio of mean income ( Ī) between adjacent
hierarchical levels. Again, it is helpful to use a piecewise function so that we
can define a pay-ratio for hierarchical level 1:

ph ≡







1 if h= 1
Īh

Īh−1

if h≥ 2
(14)

Based on our empirical findings in Section B, we assume that the pay ratio
increases exponentially with hierarchical level. I model this relation with the
following function, where r is a free parameter:

ph =

(

1 if h= 1

rh if h≥ 2
(15)

Using the same logic as with employment (shown above), the mean income
Ih in any hierarchical level is defined recursively by Eq. 16 and non-recursively
by Eq. 17.

Īh =
Īh−1

ph
(16)
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Īh = Ī1

h
∏

i=1

pi (17)

To summarize, the hierarchical pay structure of our model firm is determined
by 2 free parameters: the pay-scaling parameter r, and mean pay in the base
level ( Ī1). Code for generating hierarchical pay can be found in the C++ header
files model.h, located in the Supplementary Material.

D.2.1 Useful Statistics

Two statistics are used repeatedly within the model: mean firm pay, and the
CEO-to-average-employee pay ratio.

Mean income for all employees ( ĪT ) is equal to the average of hierarchical
level mean incomes ( Īh) weighted by the respective hierarchical level employ-
ment (Eh):

ĪT =
n
∑

h=1

Īh ·
Eh

ET
(18)

To calculate the CEO pay ratio, we define the CEO as the person(s) in the
top hierarchical level. Therefore, CEO pay is simply Īn, average income in the
top hierarchical level. The CEO pay ratio (C) is then equal to CEO pay divided
by average pay:

C =
Īn

ĪT

(19)

D.3 Adding Intra-Level Pay Dispersion

Up to this point, we have modeled only the mean income within each hierarchical
level of a firm. The last step in the modeling process is to add pay dispersion
within each hierarchical level.

I assume that pay dispersion within hierarchical levels is lognormally dis-
tributed. The lognormal distribution is defined by location parameter µ and
scale parameter σ. Our empirical investigation of firm case studies indicated
that pay dispersion with hierarchical levels is relatively constant (see Fig. 2C).
Given this finding, I assume identical inequality within all hierarchical levels.
This means that the lognormal scale parameter σ is the same for all hierarchical
levels.
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A.  Adding Pay Dispersion Within Each Hierarchical Level

B.  Relative Contribution to Intra−Firm Income Distribution

Figure 6: Adding Intra-Level Pay Dispersion to a Model Firm

This illustrates a model firm with lognormal pay dispersion in each hierarchical level.
The model firm has a pay-scaling parameter of r = 1.2 and an intra-level Gini index
of 0.13. Panel A shows the separate distributions for each level, with mean income
indicated by a dashed vertical line. Panel B shows contribution of each hierarchical
level to the resulting income distribution for the whole firm (income density functions
are summed while weighting for their respective employment).
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In order to add dispersion within each hierarchical level, I multiply mean pay
Īh by a lognormal random variate with an expected mean of one. Formally, this
is represented by Eq. 20. Since the mean of a lognormal distribution is equal to
eµ+

1
2σ

2
, I leave it to the reader to show that a mean of one requires that µ be

defined by Eq. 21.

Ih = Īh · lnN (µ,σ) (20)

µ= −
1
2
σ2 (21)

Given a value for σ (which is a free parameter), we can define the pay distri-
bution within any hierarchical level of a firm. This process is shown graphically
in Figure 6. Figure 6A shows the lognormal income distributions for each hier-
archical level of a 5-level firm. Figure 6B shows the size-adjusted contribution of
each hierarchical level to the overall intra-firm income distribution. Lower lev-
els have more members, and thus dominate the overall distribution. The code
implementing this method can be found in the C++ header file model.h, located
in the Supplementary Material.
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Table 7: Model Parameters

Parameter Definition Action Scope

α
Firm size distribution
exponent

Determines the skewness of the firm
size distribution

—

a, b Span of control parameters
Determines the shape of the firm
hierarchy.

Identical for all firms.

E1
Employment in base
hierarchical level

Used to build the employment
hierarchy from the bottom up.
Determines total employment.

Specific to each firm.

r Pay-scaling parameter
Determines the rate at which mean
income (within a firm) increases by
hierarchical level.

Specific to each firm.

Īh
Mean pay in base hierarchical
level

Sets the base level income of the
firm, which determines firm average
pay.

Specific to each firm.

σ
Intra-hierarchical level pay
dispersion parameter

Determines the level of inequality
within hierarchical levels of a firm.

Identical for all firms.

E Restricting Parameters

As discussed in section D, the hierarchy model has many ‘free’ parameters. Table
7 summarizes all of the parameters used in this model. While free to take on
any value, I restrict these parameters exclusively using empirical data. In the
following sections, I outline the methods used for this restriction.

E.1 Firm Size Distribution

Recent studies have found that firm size distributions in the United States [23]
and other G7 countries [24] can be modeled accurately with a power law. A
power law has the simple form shown in Eq. 22, where the probability of obser-
vation x is inversely proportional to x raised to some exponent α:

p(x)∝
1
xα

(22)
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Figure 7: The United States Firm Size Distribution

This figure shows the US firm size distribution compared to a power law distribution
with exponent α = 2.01 (a simulation with 15 million firms) . The US histogram
combines data for ‘employer’ firms with data for unincorporated self-employed
workers. Data for ‘employer’ firms is from the US Census Bureau, Statistics of U.S.
Businesses (using data for 2013). This data is augmented with Bureau of Labor
Statistics data for unincorporated self-employed workers (series LNU02032185 and
LNU02032192). The histogram preserves Census firm-size bins, with self-employed
data added to the first bin. The last point on the histogram consists of all firms with
more than 10,000 employees.

Figure 7 compares the US firm size distribution with a power law of exponent
α = 2.01. Although not perfect, the fit is good enough for modeling purposes.
I assume that the firm sizes can be modeled with a discrete power law random
variate. I model the US firm size distribution with α= 2.01.

A characteristic property of power law distributions is that as α approaches
2, the mean becomes undefined. In the present context, this means that the
model can produce firm sizes that are extremely large — far beyond anything
that exists in the real world. To deal with this difficulty, I truncate the power
law distribution at a maximum firm size of 2.3 million. This happens to be the
present size of Walmart, the largest US firm in existence.

Code for the discrete power law random number generator can be found in
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Figure 8: Density Estimates for Span of Control Parameters

This figure shows density estimates for the parameters a and b, which together deter-
mine the ‘shape’ of the firm hierarchy. These parameters are determined from regres-
sions on firm case-study data (Fig. 2). The density functions are estimated using a
bootstrap analysis, which involves resampling (with replacement) the case study data
many times, and calculating the parameters a and b for each resample.

the C++ header file rpld.h, located in the Supplementary Material. This code
is an adaption of Collin Gillespie’s [25] discrete power law generator found in
the R poweRlaw package (which is, in turn, an adaption of the algorithm outline
by Clauset [26]).

E.2 Span of Control Parameters

The parameters a and b together determine the shape of firm employment hier-
archy. These parameters are estimated from an exponential regression on case
study data (Fig. 2A). The model proceeds on the assumption that these param-
eters are constant across all firms.

Because the case-study sample size is small, there is considerable uncertainty
in these values. I incorporate this uncertainty into the model using the bootstrap
method [27], which involves repeatedly resampling the case-study data (with
replacement) and then estimating the parameters a and b from this resample.
Figure 8 shows the probability density distribution resulting from this bootstrap
analysis. I run the model many times, each time with a and b determined by a
bootstrap resample of case-study data.
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Code implementing this bootstrap can be found in the C++ header file
boot_span.h.

E.3 Base Level Employment

Given span of control parameters a and b, each firm hierarchy is constructed
from the bottom hierarchical level up. Thus, we must know base level employ-
ment. In practice, however, we don’t know this value — instead we are given
total employment for a particular firm. While it may be possible to use the
equations in section D to define an analytic function relating total employment
to base level employment, this is beyond my mathematical abilities.

Instead, I use the model to reverse engineer the problem. I input a range
of different base employment values into equations 7, 10, and 12 and calcu-
late total employment for each value. The result is a discrete mapping relating
base-level employment to total employment. I then use the C++ Armadillo in-
terpolation function to linearly interpolate between these discrete values. This
allows us to predict base level E1, given total employment ET . Code implement-
ing this method can be found in the C++ header file base_fit.h, located in the
Supplementary Material.

E.4 Pay-Scaling Parameter

The pay-scaling ratio r determines the rate at which mean pay increases by hier-
archical level. Unlike the span of control parameters, the pay-scaling parameter
is allowed to vary between firms. But how should it vary? I restrict the variation
of this parameter in a two-step process. I first ‘tune’ the model to Compustat
data. This results in a distribution of pay-scaling parameters specific to Com-
pustat firms. I then fit this data with a parameterized distribution, from which
simulation parameters are randomly chosen.

E.4.1 Fitting Compustat Pay-Scaling Parameters

I fit the pay-scaling parameter r to Compustat firms using the CEO-to-average-
employee pay ratio (C). The first step of this process is to build the employment
hierarchy for each Compustat firm using parameters a, b, and E1 (the latter is
determined from total employment). Given this hierarchical employment struc-
ture, the CEO pay ratio in the modeled firm is uniquely determined by the pa-
rameter r. Thus, we simply choose r such that the model produces a CEO pay
ratio that is equivalent to the empirical ratio.
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Figure 9: Fitting Compustat Firms with a Pay-Scaling Parameter

This figure shows the fitted pay-scaling parameters (r) for all Compustat firms. Panel A
shows the relation between the CEO pay ratio and firm size, with the fitted pay-scaling
parameter indicated by color. The discrete changes in color (evident as vertical lines)
correspond to changes in the number of hierarchical levels within firms. The pay-scaling
parameter distribution for all firms (and years) is shown in panel B.

To solve for this r value, I use numerical optimization (the bisection method)
to minimize the error function shown in Eq. 23. Here CCompustat and Cmodel are
Compustat and modeled CEO pay ratios, respectively.

ε(r) =
�

� Cmodel − CCompustat

�

� (23)

For each firm, the fitted value of r minimizes this error function. To ensure
that there are no large errors, I discard Compustat firms for which the best-fit r
parameter produces an error that is larger than ε = 0.01). Fitted results for r
are shown in Figure 9. Code implementing this method can be found in the C++
header file fit_model.h, located in the Supplementary Material.

E.4.2 Generating a Pay Scaling Distribution

Once we have generated r parameters for every Compustat firm, the next step
is to fit a parameterized distribution to this data. For Compustat firms, the dis-
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D.  Simulated r for Compustat Firms

Figure 10: Modeling the Firm Pay Scaling Distribution

This figure visualizes the model used to simulate firm pay-scaling parameters (r). Panel
A shows the relation between r and firm employment for Compustat firms. For the
simulation, the distribution of r is modeled with the lognormal variate r0. Panel B
shows how the lognormal scale parameter σE (defined by Eq. 28) changes with firm
size. The straight line indicates the modeled relation. Panel C shows how the modeled
dispersion of ln(r0) declines with firm size, and how this relates to Compustat r0 data.
The 2σ range indicates 2 standard deviations from the mean (on log-transformed data).
Panel D shows how the distribution of r for Compustat firms compares to the simulated
distribution achieved by applying the model to the same Compustat firms.
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persion of r is approximately lognormal, and tends to decline with firm size (see
Figure 10A). I model r as a shifted function of the lognormal variate r0:

r = 1+ lnN (r0) (24)

The lognormal variate r0 is defined by location parameter µ and scale pa-
rameter σ. While µ is assumed to be constant for all firms, σ is a function of
firm size E:

r0(E) = lnN (r0;µ,σE) (25)

I use the tuned Compustat data to solve for the parameters µ and σ. We first
transform Compustat r values using Eq. 26 to get the Compustat distribution of
r0:

r0 = r − 1 (26)

The best-fit value for µ is defined by taking the mean of ln(r0):

µ= ln(r0) (27)

Similarly, we can solve for the best-fit value for σ by taking the standard devia-
tion of ln(r0). However, unlike µ, the value σ will depend on the size range of
firms (E):

σE = SD [ ln(r0) ]E (28)

Figure 10B plots σE vs. E for logarithmically spaced size groupings of Com-
pustat firms. I model this relation using a log-linear regression. Figure 10C
shows how the modeled dispersion in r0 varies with firm size, and how this
compares to Compustat data.

Once we have fitted the parameters µ andσ to the tuned Compustat data, we
can generate r values for simulated firms using equations 24 and 25. Although
the model is simple, it produces reasonably accurate results. To test this accu-
racy, we can apply the model to the same Compustat firms for which it is ‘tuned’.
For each Compustat firm, we use the method outlined above to stochastically
generate a pay-scaling value r. As Figure 10D shows, the resulting simulated
distribution of r fairly accurately reproduces the original data.

When we move from simulating Compustat firms to a real-world distribution
of firms, this model involves significant extrapolations for small firms. Why?
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The Compustat firm sample has very few observations for firms smaller than
100. And those small firms that are included in the sample are likely not repre-
sentative of the wider population, since they are small public firms. In the real
world, virtually all small firms are private. As with all extrapolations, we simply
do the best with the data that is available, while noting that better data might
render the extrapolation moot. The code implementing this model can be found
in the C++ header file r_sim.h, located in the Supplementary Material.

E.5 Base-Level Mean Pay

As with the pay-scaling parameter, base level mean pay varies across firms. How
should it vary? Again, I restrict the variation of this parameter in a two-step
process. I first ‘tune’ the model to Compustat data. This results in a distribution
of base pay specific to Compustat firms. I then fit this data with a parameterized
distribution, from which simulation parameters are randomly chosen.

E.5.1 Fitting Compustat Base Level Pay

Having already fitted a hierarchical pay structure to each Compustat firm (in the
process of finding r), we can use this data to estimate base pay for each firm.
To do this, we set up a ratio between base level pay ( Ī1) and firm mean pay ( ĪT )
for both the model and Compustat data:

Ī Compustat
1

ĪCompustat
T

=
Ī model
1

Ī model
T

(29)

The modeled ratio between base pay and firm mean pay ( Ī model
1 / Ī model

T ) is
independent of the choice of base pay. This is because the modeled firm mean
pay is actually a function of base pay (see Eq. 17 and 18). If we run the model
with Ī model

1 = 1, then Eq. 29 reduces to:

Ī Compustat
1

Ī Compustat
T

=
1

Ī model
T

(30)

We can then rearrange Eq. 30 to solve for an estimated base pay for each
Compustat firm ( Ī Compustat

1 ):

Ī Compustat
1 =

Ī Compustat
T

Ī model
T

(31)
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Figure 11: Modeling Firm Base Level Mean Pay

This figure shows the distribution of fitted base-level mean pay for Compustat firms. I
model this data with a gamma distribution, from which simulated firm base-level mean
pay is randomly drawn. Note that fitting the unimodal gamma distribution to the bi-
modal Compustat data means that the fit is not great. (The gamma distribution does
fit the data better than other skewed distributions such as the Weibull or lognorma).
The lower mode in the Compustat data is likely not representative of the general firm
population. This lower mode is made up almost entirely of chain restaurants, which
seem to be over-represented in this sample.

Code implementing this method is found in the C++ header file fit_model.h,
located in the Supplementary Material.

E.5.2 Generating a Base Pay Distribution

Once each Compustat firm has a fitted value for base-level mean pay, we fit this
data with a parametric distribution which is then used to stochastically generate
base-level mean pay for the simulation. Since Compustat data is comprised of
observations over multiple years, in order to aggregate this data into a single
distribution, we must account for inflation. Rather than use a price index like
the GDP deflator, I divide all firm mean pay data by the average Compustat mean
pay in the appropriate year. Since our simulation is concerned only with relative
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incomes (rather than absolute incomes) no pertinent information is lost in this
process.

I model the Compustat firm base pay distribution with a gamma distribution
(Fig. 11). Note that because the Compustat data has a bimodal structure (that
I do not aim to replicate), the gamma distribution is not a particularly strong
fit. Nonetheless the gamma model closely replicates the inequality of firm base
pay (which has a Gini index of roughly 0.35). Code implementing this model
can be found in the C++ header file base_pay_sim.h (in the Supplementary
Material).

E.6 Intra-Hierarchical Level Income Dispersion

Intra-hierarchical level income dispersion is modeled with a lognormal distri-
bution, with the amount of inequality determined by the scale parameter σ. I
estimate σ from the case-study data shown in Figure 2C. This data uses the Gini
index as the metric for dispersion.

To estimate σ, we first calculate the mean Gini index of all data (Ḡ). We
then use Eq. 32 to calculate the value σ, which corresponds to the lognormal
scale parameter that would produce a lognormal distribution with an equivalent
Gini index. This equation is derived from the definition of the Gini index of a
lognormal distribution: G = erf(σ/2).

σ = 2 · erf−1(Ḡ) (32)

The model proceeds on the assumption that σ is constant for all hierarchical
levels within all firms. Because the case-study sample size is small, there is con-
siderable uncertainty in these values. I quantify this uncertainty using the boot-
strap method [27], which involves repeatedly resampling the case-study data
(with replacement) and then estimating the parameter σ from this resampled
data.

Figure 12 shows the probability density distribution resulting from this boot-
strap analysis. In order to incorporate this uncertainty, I run the model many
times, with each run using a different bootstrapped value for σ. Code imple-
menting this method can be found in the C++ header file boot_sigma.h, lo-
cated in the Supplementary Material.
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Figure 12: Density estimates for Intra-Hierarchical Level Pay Dispersion
Parameter σ

This figure shows the distribution of the lognormal scale parameterσ, which determines
pay dispersion within all hierarchical levels of all firms. The distribution is calculated
using the bootstrap method.

E.7 Counterfactual Models

To isolate the distributional effects of hierarchy, I create three counterfactual
models, each with only one income-dispersion source. This is achieved as fol-
lows:

Inter-firm dispersion only: To create this model, I set the hierarchical pay-
scaling parameter (r) to 1 for all firms (removing hierarchical pay-scaling) and
set the intra-hierarchical dispersion parameter (σ) to zero (removing dispersion
within hierarchical levels).

Inter-hierarchical dispersion only: To create this model, I set base-level pay
( Ī1) in all firms to an identical constant (removing dispersion between firms),
and set the intra-hierarchical dispersion parameter (σ) to zero (removing dis-
persion within hierarchical levels).

Intra-hierarchical dispersion only: To create this model, I set base-level pay
( Ī1) in all firms to an identical constant (removing dispersion between firms),
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set the hierarchical pay-scaling parameter (r) to 1 for all firms (removing hier-
archical pay-scaling).

E.8 Summary of Model Structure

The model is implemented in C++ using a modular design. Each major task is
carried out by a separate function that is defined in a corresponding header file.
Table 8 summarizes this structure sequentially in the order that functions are
called. In each step, I briefly summarize the action that is performed, giving
reference to the section where this action is described in detail.
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Table 8: Model High-Level Structure

Step Action Reference Section Parameter(s) Header File(s)

1 Bootstrap case-study data E.2, E.6 a, b, σ
boot_span.h
boot_sigma.h

2
Get Compustat base-level
employment

E.3 E1 base_fit.h

3
Fit Compustat pay-scaling
parameters

E.4.1 r fit_model.h

4
Get Compustat base-level
mean pay

E.5.1 I1 fit_model.h

5
Generate power law firm size
distribution

E.1 α rpld.h

6
Get simulation base-level
employment

E.3 E1 base_fit.h

7
Simulate pay-scaling
parameter distribution by
fitting Compustat data

E.4.2 r r_sim.h

8
Simulate base mean pay
distribution by fitting
Compustat data

E.5.2 I1 base_pay_sim.h

9 Run hierarchy model D all model.h

Notes: Model code makes extensive use of Armadillo, an open-source C++ linear algebra library [28].
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F The Adjusted Hierarchy Model

The hierarchy model tends to underestimate US income inequality. This may be
caused by the model’s reliance on Compustat Firm data (see Appendix E), which
is biased towards large firms. The result is that the model likely has too little
inter-firm income dispersion. Here I present the results of an adjusted model in
which inter-firm income dispersion is increased so that the model closely repro-
duces US macro-level data.

As outlined in Appendix E, inter-firm income dispersion is modeled by fitting
a gamma distribution to Compustat firm data. The gamma distribution has the
following probability density function:

p(x) =
1

Γ (k)θ k
· x k−1 · e−k/θ (33)

In the original model, the parameters k and θ are both determined by empirical
data. In the adjusted model, I introduce a fudge-factor c that allows me to adjust
the fitted k parameter by a constant amount:

kadjust = c · kfit (34)

The adjusted model then uses the parameter kadjust instead of kfit. All of the
model’s other parameters remain constant. Note that for c > 1, inter-firm dis-
persion is decreased (relative to the original model). For c < 1, inter-firm dis-
persion is increased. I choose the value c so that the adjusted model produces
the best match to US data. Model results for c = 0.5 are shown in Figure 13. By
increasing inter-firm dispersion, we significantly improve model’s fit to the body
of the US distribution of income. Note that the adjusted model’s Gini index is
significantly higher than in the original model, and now better matches US data.
Results in the tail remain virtually unchanged. (This is expected, since hierarchy
shapes the tail).
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Figure 13: Adjusted Model Income Distribution vs. US Data

This figure compares various aspects of the adjusted model’s
income distribution to US data over the years 1992-2015.
The adjusted model has increased inter-firm income disper-
sion relative to the original model. Panel A shows the Gini
index, with two different US sources — the Current Popula-
tion Survey (CPS) and the Internal Revenue Service (IRS).
Panel B shows the top 1% income share, using data from 17
different time series. Panel C shows the results of fitting a
power law distribution to the top 1% of incomes (where α
is the scaling exponent). Panel D plots the income density

curve with mean income normalized to 1 (using data from
the CPS). Panels E, F, and G use IRS data to construct the
Lorenz curve, cumulative distribution, and complementary
cumulative distribution (respectively). The cumulative dis-
tribution shows the proportion of individuals with income
less than the given x value. The complementary cumula-
tive distribution shows the proportion of individuals with
income greater than the given x value. Note the log scale
on the x-axis for these last two plots. For sources and meth-
ods, see Appendix A.
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G A Null-Effect Model for US Top Incomes and Firm Size

A key prediction of the hierarchy model is that top incomes should be concen-
trated at the top of large institutions. To test this prediction, I look at the size
distribution of firms associated with top incomes. Here I develop a null-effect
model, which is what we would expect to find if there is absolutely no relation
between firm membership and income. In the null-effect case, we should find
that the size distribution of firms associated with top earners is exactly the same
as the size distribution of firms associated with the general population.

To determine the null-effect we must find the size distribution of firms as-
sociated with the general population. Before doing so, some clarification is in
order. What we are talking about is the size distribution of firms associated with
individuals. As shown in Figure 14, this is quite different from the firm-size dis-
tribution. To determine the firm-size distribution, each firm is counted once.
However, when we map firm size to individuals, each firm is weighted by the
number of individuals within it. When we do this, we are really looking at the
distribution of employment by firm size. So what is this distribution?

If we randomly select an individual from the private sector population, let
p(ix) be the probability that this individual is associated with a firm of size x .
This probability will determine the size distribution of firms associated with a
random sample of individuals. Let p(x) be the probability of randomly selecting
a firm of size x from the firm population. Using Figure 14 for guidance, we can
see that p(ix) is given by:

p(ix)∼ x · p(x) (35)

If we know p(x)— the probability distribution of firms — we can use Eq. 35
to predict the firm-size distribution associated with a random sample of indi-
viduals. Let’s do so for the United States. The US firm-size distribution can
be approximated by the power-law distribution p(x) ∼ x−2 (see Appendix E).
Substituting this into Eq. 35 gives:

p(ix)∼ x−1 (36)

Because firm sizes generally span many orders of magnitude, it is more con-
venient to look at the log transformation of Eq. 36. Therefore, we want to know



A Null-Effect Model for US Top Incomes and Firm Size 38

4311 11 322 2

4 4 4 43 3 33 3 32 22 2 2 211 11

Firm-Size Distribution

Size Distribution of Firms 
Associated with Individuals 

Figure 14: Mapping Firm Sizes to Individuals

This figure illustrates the mapping of firm size to individuals. Each box represents a
firm, with size indicated above. The mapping of firm size to individuals appears below
each firm. Let p(x) be the probability of randomly selecting a firm of size x from the firm
population. Let p(ix) be the probability of randomly selecting an individual associated
with a firm of size x (from the individual population). Noting that each firm size x
appears x times in the individual-to-firm mapping, we can state that p(ix)∝ x · p(x).

the probability density for p(ln ix). To find this, we use the standard change-of-
variable function for a probability density:

f y = fx

�

x(y)
�

·
�

� x ′(y)
�

� (37)

We let f y = p(ln ix) and fx = c · x−1 (where c is constant). The transformation
function is y = ln x . We then note that x(y) = e y and x ′(y) = e y . Substituting
into Eq. 37 gives:

f y = c · (e y)−1 · e y = c (38)

Since f y = p(ln ix), we can state that p(ln ix) = c, the uniform distribution. If
we randomly draw a sample of individuals from the US private sector, we predict
that their associated firm-size distribution will be log-uniform. This is the null-
effect. If there is absolutely no relation between income and firm membership,
we should find that the size distribution of firms associated with top incomes (in
the US) is log-uniformly distributed.
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H The Effect of Hierarchy on Inequality

An interesting question to ask is — what effect does hierarchy have on income
inequality? In this section, I isolate the inequality effects of hierarchy using the
counterfactual models of the United States. Each model contains only one of the
three sources of income dispersion used in the original model. By comparing
these counterfactual models to the original model, we can determine how each
dispersion source affects income inequality.

The results in Figure 15 indicate that hierarchy’s effect on inequality depends
on how we measure inequality. When using the Gini index (Figure 15A), we see
that the model with inter-firm dispersion has inequality that is closest to the
original model. (The model with inter-hierarchical dispersion comes a distant
second). This suggests that hierarchy does not have a particularly strong effect
on inequality. However, things change drastically when we switch to measuring
inequality in terms of the income share of the top 1% (Fig. 15B). Now we find
that the model with inter-hierarchical dispersion has inequality that is nearly
identical to the original model. The other two sources of dispersion are incon-
sequential. How can this be?1

To understand this apparent contradiction, we can look at the Lorenz curves
for each model (Fig. 15C). The Lorenz curve offers a convenient way to visualize
the ‘shape’ of inequality. The curve traces the cumulative fraction of income
held by all individuals below a given income percentile. The Gini index and
the top 1% income share are both intimately related to the Lorenz curve. The
Gini index is proportional to the area between the Lorenz curve and the line of
perfect equality (the black line in Fig. 15C). The income share of the top 1% is

1 Some readers may note that I am using non-decomposable metrics to measure inequality.
Since neither the Gini index nor the top 1% income share is decomposable, the inequality of
the counterfactual models will not sum to the inequality of the original model. Thus we cannot
quantify exactly ‘how much’ each factor contributes to income inequality. Although there are
inequality metrics that are decomposable (such as the Theil index, or simply the variance), I
choose not to use them here. For starters, such measures are generally far less intuitive than the
Gini index or top income shares. Second, decomposable measures merely give a decomposition
of inequality — not the decomposition. Decomposition requires deciding how to weight the
number of incomes of a given size against the size of the income. Since there are many ways
to do this, there are many equally valid decompositions of inequality. Anthony Shorrocks [29]
summarizes the problem nicely: “Inequality comparisons are invariably sensitive to the choice
of inequality index used since alternative measures tend to emphasize inequality at different
points in the distribution. Replacing one index by another will therefore almost always change
the relative significance of the between- and with-group terms”.



The Effect of Hierarchy on Inequality 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A B C D

Model Type

G
in

i I
nd

ex

A.  Gini Index

0.00

0.05

0.10

0.15

0.20

A B C D

Model Type

F
ra

ct
io

n 
of

 T
ot

al
 In

co
m

e

B.  Top 1% Income Share

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Income Percentile

C
um

ul
at

iv
e 

F
ra

ct
io

n 
of

 In
co

m
e A

B

C

C.  Lorenz Curve

A    original model

C    inter−firm dispersion only

B     inter−hierarchical dispersion only

D    intra−hierarchical dispersion only

Figure 15: How Hierarchy Affects Inequality

This figure compares the original hierarchy model of the United States to three differ-
ent counterfactual models. Each counterfactual model contains only one of the three
sources of income dispersion. Panel A compares the Gini index of each model, while
Panel B compares the top 1% income share. Note that since both of these inequality
metrics are not additive, the inequality in the counterfactual models will not sum to the
inequality in the original model. Panel C shows the Lorenz curve for each model, with
shaded regions indicating the 95% range. For clarity (and because it plays a negligi-
ble role determining income distribution), the intra-hierarchical dispersion model is not
shown in Panels C.
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equal to the vertical distance between the Lorenz curve and y = 1, at the point
x = 0.99.

The apparent contradiction between the Gini and top 1% results is now easy
to understand. It is caused by an intersection between the inter-firm Lorenz curve
and the inter-hierarchical level Lorenz curve. For incomes below this intersec-
tion, inter-firm dispersion plays the most important role in shaping inequality.
However, for incomes above the intersection, hierarchy plays the most important
role in shaping inequality.

These results reinforce those in the main paper. Hierarchy is important for
shaping the tail of the distribution (the top 1%), while dispersion between firms
shapes the rest of the distribution. These results also demonstrate the pitfalls
of using a single metric to quantify inequality. No single metric can capture all
of the information in a Lorenz curve. The Gini index places an emphasis on the
body of the distribution, while top income fraction metrics capture the dynamics
of the tail. The hierarchy model suggest that when we study top income shares,
we are studying the effects of firm hierarchy.
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