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A Sources and Methods

Sources are listed by the figure in which they appear.

Sources for Figure 4 (Modeled Income Distribution vs. US Data)

Complementary Cumulative Distribution

The US complementary cumulative distribution is calculated from data in the IRS
Individual Complete Report (Publication 1304), Table 1.1, from 1996 to 2015.

Cumulative Distribution

The US cumulative distribution is calculated from data in the IRS Individual
Complete Report (Publication 1304), Table 1.1, from 1996 to 2015.

Gini Index

I use two sources for the US Gini index. The first source is the US Current Popu-
lation Survey, Table PINC-08 (available from the US Census) over the years 1994
to 2015. The second source is the IRS Individual Complete Report (Publication
1304), Table 1.1, from 1996 to 2015. I estimate the Gini index by constructing a
Lorenz curve from the reported cumulative frequency data. R code implement-
ing this method is available in the Supplementary Material.

The Census and IRS data are not mutually consistent. IRS data is based
on tax units, not individuals. The advantage of the IRS data is that it is an
administrative record. Current Population Survey (CPS) data, on the other hand,
is obtained by interview. The advantage of the CPS data is that it explicitly counts
individuals. The disadvantage is that “there is a tendency in household surveys
for respondents to under report their income” [1].

Lorenz Curve

The US Lorenz curve is calculated from data in the IRS Individual Complete Report
(Publication 1304), Table 1.1, from 1996 to 2015.

Power Law Exponents

I estimate the power law exponent of the income distribution tail using the max-
imum likelihood method. US empirical data comes from the IRS Individual


https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-08.html
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
https://www.irs.gov/statistics/soi-tax-stats-individual-statistical-tables-by-size-of-adjusted-gross-income
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Table 1: Power Law Cutoff Boundaries in US Data

Year Percentile a

1996 0.987 2.92
1997 0.985 2.89
1998 0.996 2.58
1999 0.996 2.58
2000 0.995 2.54
2001 0.996 2.63
2002 0.996 2.67
2003 0.996 2.65
2004 0.995 2.59
2005 0.994 2.54
2006 0.993 2.54
2007 0.993 2.54
2008 0.994 2.66
2009 0.995 2.78
2010 0.994 2.73
2011 0.994 2.74
2012 0.992 2.64
2013 0.993 2.74
2014 0.992 2.70
2015 0.991 2.72

Complete Report (Publication 1304), Table 1.1. Since this data is reported in
binned form, I use the binned log-likelihood equation developed by Virkar and
Clauset [2]:

k
Y =n(a—1)-Inb, + Z h, ln|: b= —p,, 7 ] (1)
i=min

Here a is the power law exponent, b; and b;,; are consecutive bin bound-
aries, h; and h;,; are consecutive bin counts, k is the number of bins, and n
is the sum of bin counts above b, ;, (the cutoff point for the power law). The
best-fit exponent a is the value that maximizes the log-likelihood function (&).
Since there is no closed-form solution to this maximization problem, I solve for
a numerically. To determine the power law exponent for the top 1% of incomes
in each year, I set the power law cutoff boundary (b,,;,) to the empirical bin that

is closest to the 99th percentile. Results are shown in Table 1.
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To find the power law exponent in modeled data, I use the following maxi-
mum likelihood estimator:

min

n -1
&:1+n[21nxxi ] 2)

Here a is the best-fit power law exponent, x; is the ith data point, x,;, is the
lower bound of the power law, and n is the number of data points above x,,;,,. To
ensure compatibility with empirical power law estimates, I estimate the model’s
power law exponent using the empirical cutoff values. For each model run, I set
Xin Dy randomly selecting a percentile value from Table 1.

All data and code are available in the Supplementary Material.

Probability Density Function

I estimate the normalized probability density function for US income using data
from Current Population Survey Table PINC-08 (available from the US Census)
over the years 1994 to 2015. This table reports binned data.

To estimate the normalized probability density function in each year, I first
create a simulated income distribution (I) using bin midpoints. Each midpoint
income M; is repeated F; times, where F; is the frequency count for the ith bin.
I then normalize I by dividing all elements by the mean income I.

. S 3)

Lastly, I fit the simulated income distribution (I) with a numerical density func-
tion. R code implementing this method is available in the Supplementary Mate-
rial.

Top 1% Income Share

Sources for top 1% income share data are shown in Table 2.


https://www.census.gov/data/tables/time-series/demo/income-poverty/cps-pinc/pinc-08.html
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Table 2: US Top 1% Income Share Sources

Series Info Source
sfainc992j Pre-tax factor income | equal-split adults | Share | Adults | share of total (ratio) [3]
sfainc996i Pre-tax factor income | individuals | Share | 20 to 64 | share of total (ratio) [3]
sfainc999i Pre-tax factor income | individuals | Share | All Ages | share of total (ratio) [3]
sfainc999t Pre-tax factor income | tax unit | Share | All Ages | share of total (ratio) [3]
sfiinc992j Fiscal income | equal-split adults | Share | Adults | share of total (ratio) [3]
sfiinc992t Fiscal income | tax unit | Share | Adults | share of total (ratio) [3]
sfiinc996i Fiscal income | individuals | Share | 20 to 64 | share of total (ratio) [3]
sfiinc999i Fiscal income | individuals | Share | All Ages | share of total (ratio) [3]
sfiinc999t Fiscal income | tax unit | Share | All Ages | share of total (ratio) [3]
sptinc992j Pre-tax national income | equal-split adults | Share | Adults | share of total (ratio) [3]
sptinc996i Pre-tax national income | individuals | Share | 20 to 64 | share of total (ratio) [3]
sptinc999i Pre-tax national income | individuals | Share | All Ages | share of total (ratio) [3]
sptinc999t Pre-tax national income | tax unit | Share | All Ages | share of total (ratio) [3]
sfiinc_z US World Top Incomes Legacy Series [4]
lakner Calculated from micro data [5]
piketty book no kgains Legacy data from Capital in the 21st Century [6]
piketty book with kgains Legacy data from Capital in the 21st Century [6]
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Sources for Figure 5 (Firm Size Distributions Associated With Top In-
comes and Wealth)

Forbes 400 data is from the year 2014. Firm size data was collected by the
author. For public companies, firm size data comes from Compustat. For private
companies, data comes from firm websites and annual reports. The Execucomp
500 consists of the 500 top paid US executives in the Execucomp database in
each year from 1992 to 2015.
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B Case-Study Firms

In this section I review the case-study evidence that informs the hierarchy model.
Table 3 summarizes the source data, while Figure 1 shows the hierarchical em-
ployment and pay structure of these firms. The firms remain anonymous, and
are named after the authors of the case-study papers. Although the exact shapes
vary, all the firms in this sample have a roughly pyramidal employment structure
and inverse pyramid pay structure.

Figure 2 dissects these trends to allow further analysis. Figure 2A shows how
the span of control (the employment ratio between adjacent ranks) changes as a
function of hierarchical level. In these firms, the span of control is not constant,
but instead tends to increase with hierarchical level. Similarly, Figure 2B shows
the ratio of mean pay between adjacent levels. Like the span of control, the pay
ratio tends to increase with hierarchical level. Lastly, Figure 2C shows income
dispersion within hierarchical ranks of each firm (measured with the Gini index).
Note that income dispersion within levels is quite low and there is no evidence
of a trend.

In addition to case-study data of single firms, several studies have reported
the aggregate hierarchical structure of a sample of firms (see Table 4 and Figure
4). The data from these firms reveals the same general trends as the case studies.
However, the aggregate data is less useful because these studies capture only the
top few hierarchical ranks within firms.

The case-study data plays a central role in the hierarchical model developed
in this paper. From the case-study evidence, I propose the following ‘stylized’
facts about firm employment and pay structure:

1. The span of control tends to increase with hierarchical level.

2. The inter-level pay ratio tends to increase with hierarchical level.

3. Intra-level income inequality is approximately constant across all hierar-
chical levels.

The case-study evidence informs the basic structure of the model, and also
some of its key parameters. The ‘shape’ of modeled firm hierarchies is deter-
mined from the fitted span-of-control trend shown in Figure 2A. Figure 3 shows
the idealized employment hierarchy that is implied by case-study data. Error
bars indicate uncertainty, calculated using the bootstrap resampling method. Pa-
rameters for intra-level income dispersion are determined from the mean of data
in Figure 2C. For a detailed discussion of the model algorithm and parameter-
fitting procedure, see Sections D and E.
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A. Firm Hierarchical Employment Structure
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Figure 1: The Hierarchical ‘Shape’ of Six Different Case-Study Firms

This figure shows the hierarchical employment and pay structure of six different case-
study firms. Panel A shows the hierarchical structure of employment, while Panel B
shows the hierarchical pay structure.
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Figure 2: Analyzing the Hierarchical Structure of Case-Study Firms

This figure shows data from 7 case-study firms. Panel A shows how the span of con-

trol (the subordinate-to-superior employment ratio between adjacent levels) varies with

hierarchical level. Note the log scale on the y-axis. Panel B shows how the superior-

to-subordinate pay ratio varies with hierarchical level. In Panels A and B, the x-axis

corresponds to the upper hierarchical level in each corresponding ratio. Panel C shows

the Gini index of income inequality within each hierarchical level. Different case-study

firms are indicated by color, with names indicating the study author. Note that hori-

zontal ‘jitter’ has been introduced in all three plots in order to better visualize the data

(hierarchical level is a discrete variable). The lines in Panels A and B indicate exponen-

tial regressions, while the line in Panel C shows the average Gini index. Grey regions

correspond to the 95% confidence intervals.
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Table 3: Summary of Firm Case Studies

Source Years Country Firm Levels zl:::tlrzf Irt‘::::e L;‘;:L::i(::e
Audas [7] 1992 Britain All v v

Baker [8] 1969-1985 United States Management v v v
Dohmen [9] 1987-1996 Netherlands All v v v
Grund  [10] 1995 & 1998 US and Germany All v v

Lima [11] 1991-1995 Portugal All v v v
Morais* [12] 2007-2010  Undisclosed All v v

Treble  [13] 1989-1994  Britain All v v v

Notes: This table shows metadata for the firm case studies displayed in Fig. 2. The ‘Firm Levels’ column refers to the
portion of the firm that is included in the study. ‘Management’ indicates that only management levels were studied.
*For the analysis conducted in this paper I discard (as an outlier) the bottom hierarchical level in Morais and Kak-
abadse’s data.
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Figure 3: Idealized Firm Employment Hierarchy Implied by Case Studies

This figure shows the idealized firm hierarchy that is implied by fitting trends to case-
study data (Fig. 2A). Error bars show the uncertainty in the hierarchical shape, calcu-
lated using a bootstrap resample of case-study data.
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Figure 4: Aggregate Studies of Firm Hierarchical Structure

This figure shows data from 9 different aggregate firm studies. Most of these studies
only survey the top several hierarchical levels in each firm. Because of this, I order
hierarchical levels from the top down, where the CEO is level 0, the level below is -1, etc.
Panel A shows how the span of control (the employment ratio between adjacent levels)
relates to hierarchical level. Panel B shows how the pay ratio between adjacent levels
varies with hierarchical level. In both plots, horizontal ‘jitter’ has been introduced in
order to better visualize the data (hierarchical level is a discrete variable). Grey regions
correspond to the 95% confidence interval for regressions.
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Table 4: Summary of Firm Aggregate Studies

Source Years Number of Firms Country Firm Levels Span of Control Level Income
Ariga [14] 1981-1989 unknown Japan All v v

Bell [15] 2001-2010 552 United Kingdom  Top 3 v v
Eriksson [16] 1992-1995 210 Denmark Management v v
Heyman [17] 1991,1995 560 Sweden Management v v
Leonard [18] 1981-1985 439 United States Top 9 v

Main [19] 1980-1984 200 United States Top 4 v
Mueller [20] 2004-2013 880 United Kingdom ~ All v v
Rajan [21] 1986-1998 261 United States Top 2 v

Tao [22] 1986-1998 8101 Taiwan Top 2 v

Notes: This table shows metadata for the aggregate studies displayed in Fig. 4. The ‘Firm Levels’ column refers to the
portion of the firm that is included in the study. ‘Top 2’, ‘Top 3’, etc. indicates that only the top n levels were included in
the study (where the top level is the CEO).




Compustat Data 13

C Compustat Data

This paper makes extensive use of the Compustat and Execucomp databases.
Compustat contains data for most publicly traded US companies, while Exe-
cucomp contains data for executive compensation. Three key statistics used
throughout this paper are calculated from this data: firm mean income, the CEO-
to-average-employee pay ratio, and the capitalist income fraction of executives. I
discuss the data and methods used for these calculations in the following sec-
tions.

C.1 Firm Mean Income

Firm mean income is calculated by dividing total staff expenses (Compustat Se-
ries XLR) by total employment (Compustat Series EMP):

Total Staff Expenses

4)

Firm Mean Income =
Total Employment

C.2 CEO Pay Ratio

Throughout this paper, I use the term ‘CEQ’ to refer to the executive at the top of
the corporate hierarchy. I identify CEOs using the titles contained in the Execu-
comp series TITLEANN. Because titles vary greatly by company, identifying the
top executive is not always a simple task. While a manual search would be most
accurate, this is unrealistic given that the Execucomp database contains over
275 000 entries. Instead, I use the following three-step algorithm to identify the
‘CEO’:

1. Find all executives whose title contains one or more of the words in the
‘CEO Titles’ list (Table 5).

2. Of these executives, take the subset whose title does not contain any of
the words in the ‘Subordinate Titles’ list (Table 5).

3. If this search returns more than one executive per firm per year, chose
the executive with the highest pay.

After identifying the CEO (and matching CEO pay data with firm data con-
tained in the Compustat database), I calculate the CEO pay ratio using the fol-
lowing equation:

CEO Pay

CEO Pay Ratio = —;
Firm Mean Income

(5)
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Table 5: Titles Used to Identify the ‘CEO’

CEO Titles: Subordinate Titles
president vp

chairman V-p

CEO cfo

Chief Executive Officer vice

chmn chief finance officer
president of
coo
division
div
president-
group president
chairmain-
co-president
deputy chairman
pres.-
Chief Financial Officer

Notes: This table shows the Execucomp titles used to identify the CEO of each
company. CEOs are deemed to be those whose title contains words in the left
column, but not those in the right column. Titles such as ‘president-’ and ‘pres-
ident of’ are included in the subordinate list because they typically refer to a
president of a division with the company: i.e. ‘president of western division’ or

‘president-western hemisphere’.

CEO pay ratio and firm mean income data are collectively available for roughly
6000 firm-year observations over the period 1992-2016. I use this data to ‘tune’
my hierarchical model of the firm (see Section E) . Figure 5 shows selected sum-
mary statistics of this dataset.
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Figure 5: Selected Statistics from the Firm Sample Used for Model Tuning

This figure shows statistics for the Compustat firm sample used to tune my hierarchical

model. Panel A shows the number of firms in the sample over time, Panel B the average

firm size, and Panel C the share of US employment held by these firms. Panel D shows

the logarithmic distribution of firm size, and Panel E shows the logarithmic distribution

of the CEO pay ratio. Panel F shows the mean CEO pay ratio of all firms over time. Panel

G shows the logarithmic distribution of normalized mean pay (mean pay divided by the

average pay of the firm sample in each year). Panel H shows the ratio of mean pay in
the Compustat sample relative to the US average (calculated from BEA Table 1.12 by
dividing the sum of employee and proprietor income by the number of workers in BEA

Table 6.8C-D. Panel I shows the Gini index of firm mean pay over time.
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D Hierarchy Model Equations

In this section, I outline the mathematics underlying my hierarchical model of
the firm. The model assumptions, outlined below, are based on the stylized facts
gleaned from the real-world firm data in section B.

1. Firms are hierarchically structured, with a span of control that increases
exponentially with hierarchical level.

2. The ratio of mean pay between adjacent hierarchical levels increases ex-
ponentially with hierarchical level.

3. Intra-hierarchical-level income is lognormally distributed and constant across
all levels.

Using these assumptions, I first develop an algorithm that describes the hi-
erarchical employment within a model firm, followed by an algorithm that de-
scribes the hierarchical pay structure.

Table 6: Notation

Definition

span of control parameter 1

span of control parameter 2

CEO to average employee pay ratio
employment

cumulative distribution function

Gini index of inequality

hierarchical level

average income

lognormal location parameter
number of hierarchical levels in a firm
pay ratio between adjacent hierarchical levels
pay-scaling parameter

span of control

lognormal scale parameter

total for firm

round down to nearest integer
product of a sequence of numbers

M:l‘—ﬂqmﬁ“czth*mwmm@n%:
o
=N

sum of a sequence of numbers
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D.1 Generating the Employment Hierarchy

To generate the hierarchical structure of a firm, we begin by defining the span
of control (s) as the ratio of employment (E) between two consecutive hierar-
chical levels (h), where h = 1 is the bottom hierarchical level. It simplifies later
calculations if we define the span of control in level 1 as s = 1. This leads to the
following piecewise function:

1 if h=1

KR = ©

h

Based on our empirical findings in Section B, we assume that the span of
control is not constant; rather it increases exponentially with hierarchical level.
I model the span of control as a function of hierarchical level (s;) with a simple
exponential function, where a and b are free parameters:

1 if h=1 o
S, =
! a-e if h>2

As one moves up the hierarchy, employment in each consecutive level (Ej,)
decreases by 1/s;,. This yields Eq. 8, a recursive method for calculating E,. Since
we want employment to be whole numbers, we round down to the nearest inte-
ger (notated by |). By repeatedly substituting Eq. 8 into itself, we can obtain a
non-recursive formula (Eq. 9). In product notation, Eq. 9 can be written as Eq.
10.

E,=|l— for h>1 (8)
Sh
1 1 1
Eh :,L E]. ''''' eee * T (9)
Sy S3 Sh
P
E=LE] |- (10)
i=1 °i

Total employment in the whole firm (E;) is the sum of employment in all
hierarchical levels. Defining n as the total number of hierarchical levels, we get
Eq. 11, which in summation notation, becomes Eq. 12.

E;=E, +E,+..+E, (11)
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Er= ) E, (12)

In practice, n is not known beforehand, so we define it using Eq. 10. We
progressively increase h until we reach a level of zero employment. The highest
level n will be the hierarchical level directly below the first hierarchical level with
zero employment:

n={h | E,>1 and E,,, =0} (13)

To summarize, the hierarchical employment structure of our model firm is
determined by 3 free parameters: the span of control parameters a and b, and
base-level employment E;. Code for this hierarchy generation algorithm can be
found in the C++ header files hierarchy.h and exponents.h, located in the
Supplementary Material.

D.2 Generating Hierarchical Pay

To model the hierarchical pay structure of a firm, we begin by defining the inter-
hierarchical pay-ratio (p,) as the ratio of mean income (I) between adjacent
hierarchical levels. Again, it is helpful to use a piecewise function so that we
can define a pay-ratio for hierarchical level 1:

1 if h=1

= i (14)
A I
Iy
Based on our empirical findings in Section B, we assume that the pay ratio
increases exponentially with hierarchical level. I model this relation with the

following function, where r is a free parameter:

)1 if h=1 (15)
Pr= rmoif h>2

Using the same logic as with employment (shown above), the mean income
I, in any hierarchical level is defined recursively by Eq. 16 and non-recursively
by Eq. 17.

I
f,="2 (16)
Pn
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I,=1I, ﬂpi (17)

To summarize, the hierarchical pay structure of our model firm is determined
by 2 free parameters: the pay-scaling parameter r, and mean pay in the base
level (I;). Code for generating hierarchical pay can be found in the C++ header
files model . h, located in the Supplementary Material.

D.2.1 Useful Statistics

Two statistics are used repeatedly within the model: mean firm pay, and the
CEO-to-average-employee pay ratio.

Mean income for all employees (I;) is equal to the average of hierarchical
level mean incomes (I;,) weighted by the respective hierarchical level employ-
ment (E,):

_ . E,
L=>1, = (18)
h=1 T

To calculate the CEO pay ratio, we define the CEO as the person(s) in the
top hierarchical level. Therefore, CEO pay is simply I,, average income in the
top hierarchical level. The CEO pay ratio (C) is then equal to CEO pay divided
by average pay:

(19)

@)
Il
:”|= 1

D.3 Adding Intra-Level Pay Dispersion

Up to this point, we have modeled only the mean income within each hierarchical
level of a firm. The last step in the modeling process is to add pay dispersion
within each hierarchical level.

I assume that pay dispersion within hierarchical levels is lognormally dis-
tributed. The lognormal distribution is defined by location parameter u and
scale parameter . Our empirical investigation of firm case studies indicated
that pay dispersion with hierarchical levels is relatively constant (see Fig. 2C).
Given this finding, I assume identical inequality within all hierarchical levels.
This means that the lognormal scale parameter o is the same for all hierarchical
levels.
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A. Adding Pay Dispersion Within Each Hierarchical Level
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Figure 6: Adding Intra-Level Pay Dispersion to a Model Firm

This illustrates a model firm with lognormal pay dispersion in each hierarchical level.
The model firm has a pay-scaling parameter of r = 1.2 and an intra-level Gini index
of 0.13. Panel A shows the separate distributions for each level, with mean income
indicated by a dashed vertical line. Panel B shows contribution of each hierarchical
level to the resulting income distribution for the whole firm (income density functions

are summed while weighting for their respective employment).
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In order to add dispersion within each hierarchical level, I multiply mean pay
I, by a lognormal random variate with an expected mean of one. Formally, this
is represented by Eq. 20. Since the mean of a lognormal distribution is equal to
ehtio” , I leave it to the reader to show that a mean of one requires that u be
defined by Eq. 21.

I,=1I,- InA(u,0) (20)
U= —%0'2 (21)

Given a value for o (which is a free parameter), we can define the pay distri-
bution within any hierarchical level of a firm. This process is shown graphically
in Figure 6. Figure 6A shows the lognormal income distributions for each hier-
archical level of a 5-level firm. Figure 6B shows the size-adjusted contribution of
each hierarchical level to the overall intra-firm income distribution. Lower lev-
els have more members, and thus dominate the overall distribution. The code
implementing this method can be found in the C++ header file model . h, located
in the Supplementary Material.
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Table 7: Model Parameters

Parameter | Definition Action Scope
a Firm size distribution Determines the skewness of the firm
exponent size distribution
Determines the shape of the firm
a, b Span of control parameters . = Identical for all firms.
hierarchy.
Empl tinb Used to build the employment
mployment in base
E; . . ym hierarchy from the bottom up. Specific to each firm.
hierarchical level )
Determines total employment.
Determines the rate at which mean
r Pay-scaling parameter income (within a firm) increases by Specific to each firm.
hierarchical level.
. . ) Sets the base level income of the
- Mean pay in base hierarchical i . . i . i
Iy level firm, which determines firm average | Specific to each firm.
eve
pay.
Intra-hierarchical level pa Determines the level of inequali
o Y quatty Identical for all firms.

dispersion parameter within hierarchical levels of a firm.

E Restricting Parameters

As discussed in section D, the hierarchy model has many ‘free’ parameters. Table
7 summarizes all of the parameters used in this model. While free to take on
any value, I restrict these parameters exclusively using empirical data. In the
following sections, I outline the methods used for this restriction.

E.1 Firm Size Distribution

Recent studies have found that firm size distributions in the United States [23]
and other G7 countries [24] can be modeled accurately with a power law. A
power law has the simple form shown in Eq. 22, where the probability of obser-
vation Xx is inversely proportional to x raised to some exponent a:

p(x) o = 22)
Xa
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Figure 7: The United States Firm Size Distribution

This figure shows the US firm size distribution compared to a power law distribution
with exponent a = 2.01 (a simulation with 15 million firms) . The US histogram
combines data for ‘employer’ firms with data for unincorporated self-employed
workers. Data for ‘employer’ firms is from the US Census Bureau, Statistics of U.S.
Businesses (using data for 2013). This data is augmented with Bureau of Labor
Statistics data for unincorporated self-employed workers (series LNU02032185 and
LNU02032192). The histogram preserves Census firm-size bins, with self-employed
data added to the first bin. The last point on the histogram consists of all firms with
more than 10,000 employees.

Figure 7 compares the US firm size distribution with a power law of exponent
a = 2.01. Although not perfect, the fit is good enough for modeling purposes.
I assume that the firm sizes can be modeled with a discrete power law random
variate. I model the US firm size distribution with a = 2.01.

A characteristic property of power law distributions is that as a approaches
2, the mean becomes undefined. In the present context, this means that the
model can produce firm sizes that are extremely large — far beyond anything
that exists in the real world. To deal with this difficulty, I truncate the power
law distribution at a maximum firm size of 2.3 million. This happens to be the
present size of Walmart, the largest US firm in existence.

Code for the discrete power law random number generator can be found in
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Figure 8: Density Estimates for Span of Control Parameters

This figure shows density estimates for the parameters a and b, which together deter-
mine the ‘shape’ of the firm hierarchy. These parameters are determined from regres-
sions on firm case-study data (Fig. 2). The density functions are estimated using a
bootstrap analysis, which involves resampling (with replacement) the case study data
many times, and calculating the parameters a and b for each resample.

the C++ header file rpld.h, located in the Supplementary Material. This code
is an adaption of Collin Gillespie’s [25] discrete power law generator found in
the R poweRlaw package (which is, in turn, an adaption of the algorithm outline
by Clauset [26]).

E.2 Span of Control Parameters

The parameters a and b together determine the shape of firm employment hier-
archy. These parameters are estimated from an exponential regression on case
study data (Fig. 2A). The model proceeds on the assumption that these param-
eters are constant across all firms.

Because the case-study sample size is small, there is considerable uncertainty
in these values. I incorporate this uncertainty into the model using the bootstrap
method [27], which involves repeatedly resampling the case-study data (with
replacement) and then estimating the parameters a and b from this resample.
Figure 8 shows the probability density distribution resulting from this bootstrap
analysis. I run the model many times, each time with a and b determined by a
bootstrap resample of case-study data.
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Code implementing this bootstrap can be found in the C++ header file
boot_span.h.

E.3 Base Level Employment

Given span of control parameters a and b, each firm hierarchy is constructed
from the bottom hierarchical level up. Thus, we must know base level employ-
ment. In practice, however, we don’t know this value — instead we are given
total employment for a particular firm. While it may be possible to use the
equations in section D to define an analytic function relating total employment
to base level employment, this is beyond my mathematical abilities.

Instead, I use the model to reverse engineer the problem. I input a range
of different base employment values into equations 7, 10, and 12 and calcu-
late total employment for each value. The result is a discrete mapping relating
base-level employment to total employment. I then use the C++ Armadillo in-
terpolation function to linearly interpolate between these discrete values. This
allows us to predict base level E;, given total employment E;. Code implement-
ing this method can be found in the C++ header file base_£fit.h, located in the
Supplementary Material.

E.4 Pay-Scaling Parameter

The pay-scaling ratio r determines the rate at which mean pay increases by hier-
archical level. Unlike the span of control parameters, the pay-scaling parameter
is allowed to vary between firms. But how should it vary? I restrict the variation
of this parameter in a two-step process. I first ‘tune’ the model to Compustat
data. This results in a distribution of pay-scaling parameters specific to Com-
pustat firms. I then fit this data with a parameterized distribution, from which
simulation parameters are randomly chosen.

E.4.1 Fitting Compustat Pay-Scaling Parameters

I fit the pay-scaling parameter r to Compustat firms using the CEO-to-average-
employee pay ratio (C). The first step of this process is to build the employment
hierarchy for each Compustat firm using parameters a, b, and E; (the latter is
determined from total employment). Given this hierarchical employment struc-
ture, the CEO pay ratio in the modeled firm is uniquely determined by the pa-
rameter r. Thus, we simply choose r such that the model produces a CEO pay
ratio that is equivalent to the empirical ratio.
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Figure 9: Fitting Compustat Firms with a Pay-Scaling Parameter

This figure shows the fitted pay-scaling parameters () for all Compustat firms. Panel A
shows the relation between the CEO pay ratio and firm size, with the fitted pay-scaling
parameter indicated by color. The discrete changes in color (evident as vertical lines)
correspond to changes in the number of hierarchical levels within firms. The pay-scaling
parameter distribution for all firms (and years) is shown in panel B.

To solve for this r value, I use numerical optimization (the bisection method)
to minimize the error function shown in Eq. 23. Here Cgompustar @0d Crpogel are
Compustat and modeled CEO pay ratios, respectively.

6(1‘) = | Crnodel — C'Compustat| (23)

For each firm, the fitted value of r minimizes this error function. To ensure
that there are no large errors, I discard Compustat firms for which the best-fit r
parameter produces an error that is larger than € = 0.01). Fitted results for r
are shown in Figure 9. Code implementing this method can be found in the C++
header file fit_model.h, located in the Supplementary Material.

E.4.2 Generating a Pay Scaling Distribution

Once we have generated r parameters for every Compustat firm, the next step
is to fit a parameterized distribution to this data. For Compustat firms, the dis-
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Figure 10: Modeling the Firm Pay Scaling Distribution

This figure visualizes the model used to simulate firm pay-scaling parameters (r). Panel
A shows the relation between r and firm employment for Compustat firms. For the
simulation, the distribution of r is modeled with the lognormal variate r,. Panel B
shows how the lognormal scale parameter o (defined by Eq. 28) changes with firm
size. The straight line indicates the modeled relation. Panel C shows how the modeled
dispersion of In(r,) declines with firm size, and how this relates to Compustat r data.
The 20 range indicates 2 standard deviations from the mean (on log-transformed data).
Panel D shows how the distribution of r for Compustat firms compares to the simulated
distribution achieved by applying the model to the same Compustat firms.
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persion of r is approximately lognormal, and tends to decline with firm size (see
Figure 10A). I model r as a shifted function of the lognormal variate r,:

r=1+InA4(ry) 24)

The lognormal variate r, is defined by location parameter y and scale pa-
rameter o. While u is assumed to be constant for all firms, o is a function of
firm size E:

ro(E) =In A (ro; 4, 0g) (25)

I use the tuned Compustat data to solve for the parameters y and o. We first

transform Compustat r values using Eq. 26 to get the Compustat distribution of
To:

ro=r—1 (26)

The best-fit value for u is defined by taking the mean of In(r,):

p = In(ro) (27)

Similarly, we can solve for the best-fit value for o by taking the standard devia-
tion of In(r,). However, unlike u, the value o will depend on the size range of
firms (E):

o =SD[ In(ry) 15 (28)

Figure 10B plots o vs. E for logarithmically spaced size groupings of Com-
pustat firms. I model this relation using a log-linear regression. Figure 10C
shows how the modeled dispersion in r, varies with firm size, and how this
compares to Compustat data.

Once we have fitted the parameters u and o to the tuned Compustat data, we
can generate r values for simulated firms using equations 24 and 25. Although
the model is simple, it produces reasonably accurate results. To test this accu-
racy, we can apply the model to the same Compustat firms for which it is ‘tuned’.
For each Compustat firm, we use the method outlined above to stochastically
generate a pay-scaling value r. As Figure 10D shows, the resulting simulated
distribution of r fairly accurately reproduces the original data.

When we move from simulating Compustat firms to a real-world distribution
of firms, this model involves significant extrapolations for small firms. Why?
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The Compustat firm sample has very few observations for firms smaller than
100. And those small firms that are included in the sample are likely not repre-
sentative of the wider population, since they are small public firms. In the real
world, virtually all small firms are private. As with all extrapolations, we simply
do the best with the data that is available, while noting that better data might
render the extrapolation moot. The code implementing this model can be found
in the C++ header file r_sim.h, located in the Supplementary Material.

E.5 Base-Level Mean Pay

As with the pay-scaling parameter, base level mean pay varies across firms. How
should it vary? Again, I restrict the variation of this parameter in a two-step
process. I first ‘tune’ the model to Compustat data. This results in a distribution
of base pay specific to Compustat firms. I then fit this data with a parameterized
distribution, from which simulation parameters are randomly chosen.

E.5.1 Fitting Compustat Base Level Pay

Having already fitted a hierarchical pay structure to each Compustat firm (in the
process of finding r), we can use this data to estimate base pay for each firm.
To do this, we set up a ratio between base level pay (I;) and firm mean pay (I;)
for both the model and Compustat data:

I-1Compustat I‘lmodel
rCompustat = 7 model
I I;

(29)

The modeled ratio between base pay and firm mean pay (I,;"°%!/I ™) ig
independent of the choice of base pay. This is because the modeled firm mean
pay is actually a function of base pay (see Eq. 17 and 18). If we run the model
with I"°%! =1, then Eq. 29 reduces to:

= Compustat
I p

1 1
7 Compustat T model
I, I;

(30)

We can then rearrange Eq. 30 to solve for an estimated base pay for each

Compustat firm (I fompusrat):

I— Compustat
7 Compustat __ " T
11 ~ 7 model (3 1 )
I T
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Figure 11: Modeling Firm Base Level Mean Pay

This figure shows the distribution of fitted base-level mean pay for Compustat firms. I
model this data with a gamma distribution, from which simulated firm base-level mean
pay is randomly drawn. Note that fitting the unimodal gamma distribution to the bi-
modal Compustat data means that the fit is not great. (The gamma distribution does
fit the data better than other skewed distributions such as the Weibull or lognorma).
The lower mode in the Compustat data is likely not representative of the general firm
population. This lower mode is made up almost entirely of chain restaurants, which
seem to be over-represented in this sample.

Code implementing this method is found in the C++ header file fit _model.h,
located in the Supplementary Material.

E.5.2 Generating a Base Pay Distribution

Once each Compustat firm has a fitted value for base-level mean pay, we fit this
data with a parametric distribution which is then used to stochastically generate
base-level mean pay for the simulation. Since Compustat data is comprised of
observations over multiple years, in order to aggregate this data into a single
distribution, we must account for inflation. Rather than use a price index like
the GDP deflator, I divide all firm mean pay data by the average Compustat mean
pay in the appropriate year. Since our simulation is concerned only with relative
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incomes (rather than absolute incomes) no pertinent information is lost in this
process.

I model the Compustat firm base pay distribution with a gamma distribution
(Fig. 11). Note that because the Compustat data has a bimodal structure (that
I do not aim to replicate), the gamma distribution is not a particularly strong
fit. Nonetheless the gamma model closely replicates the inequality of firm base
pay (which has a Gini index of roughly 0.35). Code implementing this model
can be found in the C++ header file base_pay_sim.h (in the Supplementary
Material).

E.6 Intra-Hierarchical Level Income Dispersion

Intra-hierarchical level income dispersion is modeled with a lognormal distri-
bution, with the amount of inequality determined by the scale parameter o. I
estimate o from the case-study data shown in Figure 2C. This data uses the Gini
index as the metric for dispersion.

To estimate o, we first calculate the mean Gini index of all data (G). We
then use Eq. 32 to calculate the value o, which corresponds to the lognormal
scale parameter that would produce a lognormal distribution with an equivalent
Gini index. This equation is derived from the definition of the Gini index of a
lognormal distribution: G = erf(o/2).

o=2-erf 1(G) (32)

The model proceeds on the assumption that o is constant for all hierarchical
levels within all firms. Because the case-study sample size is small, there is con-
siderable uncertainty in these values. I quantify this uncertainty using the boot-
strap method [27], which involves repeatedly resampling the case-study data
(with replacement) and then estimating the parameter o from this resampled
data.

Figure 12 shows the probability density distribution resulting from this boot-
strap analysis. In order to incorporate this uncertainty, I run the model many
times, with each run using a different bootstrapped value for o. Code imple-
menting this method can be found in the C++ header file boot_sigma.h, lo-
cated in the Supplementary Material.
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Figure 12: Density estimates for Intra-Hierarchical Level Pay Dispersion
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This figure shows the distribution of the lognormal scale parameter o, which determines
pay dispersion within all hierarchical levels of all firms. The distribution is calculated

using the bootstrap method.

E.7 Counterfactual Models

To isolate the distributional effects of hierarchy, I create three counterfactual
models, each with only one income-dispersion source. This is achieved as fol-

lows:

Inter-firm dispersion only: To create this model, I set the hierarchical pay-
scaling parameter (r) to 1 for all firms (removing hierarchical pay-scaling) and
set the intra-hierarchical dispersion parameter (o) to zero (removing dispersion
within hierarchical levels).

Inter-hierarchical dispersion only: To create this model, I set base-level pay
(I,) in all firms to an identical constant (removing dispersion between firms),
and set the intra-hierarchical dispersion parameter (o) to zero (removing dis-
persion within hierarchical levels).

Intra-hierarchical dispersion only: To create this model, I set base-level pay
(I 1) in all firms to an identical constant (removing dispersion between firms),
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set the hierarchical pay-scaling parameter (r) to 1 for all firms (removing hier-
archical pay-scaling).

E.8 Summary of Model Structure

The model is implemented in C++ using a modular design. Each major task is
carried out by a separate function that is defined in a corresponding header file.
Table 8 summarizes this structure sequentially in the order that functions are
called. In each step, I briefly summarize the action that is performed, giving
reference to the section where this action is described in detail.
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Table 8: Model High-Level Structure
Step | Action Reference Section Parameter(s) | Header File(s)
boot_span.h
1 Bootstrap case-study data E.2, E.6 a, b, o - p
boot_sigma.h
Get Compustat base-level .
2 E.3 E, base_fit.h
employment
Fit Compustat pay-scalin
3 pustal pay-scaiing E.4.1 r fit_model.h
parameters
Get Compustat base-level - )
4 E.5.1 I fit_model.h
mean pay
Generate power law firm size
5 o E.1 a rpld.h
distribution
Get simulation base-level )
6 E.3 E; base_fit.h
employment
Simulate pay-scaling
7 parameter distribution by E.4.2 r r_sim.h
fitting Compustat data
Simulate base mean pay
8 distribution by fitting E.5.2 I, base_pay_sim.h
Compustat data
9 Run hierarchy model D all model.h

Notes: Model code makes extensive use of Armadillo, an open-source C++ linear algebra library [28].
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F The Adjusted Hierarchy Model

The hierarchy model tends to underestimate US income inequality. This may be
caused by the model’s reliance on Compustat Firm data (see Appendix E), which
is biased towards large firms. The result is that the model likely has too little
inter-firm income dispersion. Here I present the results of an adjusted model in
which inter-firm income dispersion is increased so that the model closely repro-
duces US macro-level data.

As outlined in Appendix E, inter-firm income dispersion is modeled by fitting
a gamma distribution to Compustat firm data. The gamma distribution has the
following probability density function:

1
p(x) = F(k)ek . xk—l . e—k/G (33)

In the original model, the parameters k and 6 are both determined by empirical
data. In the adjusted model, I introduce a fudge-factor ¢ that allows me to adjust
the fitted k parameter by a constant amount:

kadjust =c- kﬁt (34)

The adjusted model then uses the parameter kg, instead of kg. All of the
model’s other parameters remain constant. Note that for ¢ > 1, inter-firm dis-
persion is decreased (relative to the original model). For ¢ < 1, inter-firm dis-
persion is increased. 1 choose the value ¢ so that the adjusted model produces
the best match to US data. Model results for ¢ = 0.5 are shown in Figure 13. By
increasing inter-firm dispersion, we significantly improve model’s fit to the body
of the US distribution of income. Note that the adjusted model’s Gini index is
significantly higher than in the original model, and now better matches US data.
Results in the tail remain virtually unchanged. (This is expected, since hierarchy
shapes the tail).
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Figure 13: Adjusted Model Income Distribution vs. US Data

This figure compares various aspects of the adjusted model’s
income distribution to US data over the years 1992-2015.
The adjusted model has increased inter-firm income disper-
sion relative to the original model. Panel A shows the Gini
index, with two different US sources — the Current Popula-
tion Survey (CPS) and the Internal Revenue Service (IRS).
Panel B shows the top 1% income share, using data from 17
different time series. Panel C shows the results of fitting a
power law distribution to the top 1% of incomes (where a
is the scaling exponent). Panel D plots the income density

curve with mean income normalized to 1 (using data from
the CPS). Panels E, F, and G use IRS data to construct the
Lorenz curve, cumulative distribution, and complementary
cumulative distribution (respectively). The cumulative dis-
tribution shows the proportion of individuals with income
less than the given x value. The complementary cumula-
tive distribution shows the proportion of individuals with
income greater than the given x value. Note the log scale
on the x-axis for these last two plots. For sources and meth-
ods, see Appendix A.
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G A Null-Effect Model for US Top Incomes and Firm Size

A key prediction of the hierarchy model is that top incomes should be concen-
trated at the top of large institutions. To test this prediction, I look at the size
distribution of firms associated with top incomes. Here I develop a null-effect
model, which is what we would expect to find if there is absolutely no relation
between firm membership and income. In the null-effect case, we should find
that the size distribution of firms associated with top earners is exactly the same
as the size distribution of firms associated with the general population.

To determine the null-effect we must find the size distribution of firms as-
sociated with the general population. Before doing so, some clarification is in
order. What we are talking about is the size distribution of firms associated with
individuals. As shown in Figure 14, this is quite different from the firm-size dis-
tribution. To determine the firm-size distribution, each firm is counted once.
However, when we map firm size to individuals, each firm is weighted by the
number of individuals within it. When we do this, we are really looking at the
distribution of employment by firm size. So what is this distribution?

If we randomly select an individual from the private sector population, let
p(i,) be the probability that this individual is associated with a firm of size x.
This probability will determine the size distribution of firms associated with a
random sample of individuals. Let p(x) be the probability of randomly selecting
a firm of size x from the firm population. Using Figure 14 for guidance, we can
see that p(i,) is given by:

p(i) ~x - p(x) (35)

If we know p(x) — the probability distribution of firms — we can use Eq. 35
to predict the firm-size distribution associated with a random sample of indi-
viduals. Let’s do so for the United States. The US firm-size distribution can
be approximated by the power-law distribution p(x) ~ x~2 (see Appendix E).
Substituting this into Eq. 35 gives:

p(i)~x~" (36)

Because firm sizes generally span many orders of magnitude, it is more con-
venient to look at the log transformation of Eq. 36. Therefore, we want to know



A Null-Effect Model for US Top Incomes and Firm Size 38

Firm-Size Distribution

i)jd)8)8] [#0] o8] @8] |dee) vid] |dede

Size Distribution of Firms
Associated with Individuals

Figure 14: Mapping Firm Sizes to Individuals

This figure illustrates the mapping of firm size to individuals. Each box represents a
firm, with size indicated above. The mapping of firm size to individuals appears below
each firm. Let p(x) be the probability of randomly selecting a firm of size x from the firm
population. Let p(i,) be the probability of randomly selecting an individual associated
with a firm of size x (from the individual population). Noting that each firm size x
appears x times in the individual-to-firm mapping, we can state that p(i,.) o< x - p(x).

the probability density for p(Ini,). To find this, we use the standard change-of-
variable function for a probability density:

fr=f(x())- | X | (37)

We let f, = p(Ini,) and f, =c- x~! (where c is constant). The transformation
function is y = Inx. We then note that x(y) = e* and x’(y) = e”. Substituting
into Eq. 37 gives:

fy=c- ()& =c (38)

Since f, = p(Ini,), we can state that p(Ini, ) = c, the uniform distribution. If
we randomly draw a sample of individuals from the US private sector, we predict
that their associated firm-size distribution will be log-uniform. This is the null-
effect. If there is absolutely no relation between income and firm membership,
we should find that the size distribution of firms associated with top incomes (in
the US) is log-uniformly distributed.
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H The Effect of Hierarchy on Inequality

An interesting question to ask is — what effect does hierarchy have on income
inequality? In this section, I isolate the inequality effects of hierarchy using the
counterfactual models of the United States. Each model contains only one of the
three sources of income dispersion used in the original model. By comparing
these counterfactual models to the original model, we can determine how each
dispersion source affects income inequality.

The results in Figure 15 indicate that hierarchy’s effect on inequality depends
on how we measure inequality. When using the Gini index (Figure 15A), we see
that the model with inter-firm dispersion has inequality that is closest to the
original model. (The model with inter-hierarchical dispersion comes a distant
second). This suggests that hierarchy does not have a particularly strong effect
on inequality. However, things change drastically when we switch to measuring
inequality in terms of the income share of the top 1% (Fig. 15B). Now we find
that the model with inter-hierarchical dispersion has inequality that is nearly
identical to the original model. The other two sources of dispersion are incon-
sequential. How can this be?!

To understand this apparent contradiction, we can look at the Lorenz curves
for each model (Fig. 15C). The Lorenz curve offers a convenient way to visualize
the ‘shape’ of inequality. The curve traces the cumulative fraction of income
held by all individuals below a given income percentile. The Gini index and
the top 1% income share are both intimately related to the Lorenz curve. The
Gini index is proportional to the area between the Lorenz curve and the line of
perfect equality (the black line in Fig. 15C). The income share of the top 1% is

! Some readers may note that I am using non-decomposable metrics to measure inequality.
Since neither the Gini index nor the top 1% income share is decomposable, the inequality of
the counterfactual models will not sum to the inequality of the original model. Thus we cannot
quantify exactly ‘how much’ each factor contributes to income inequality. Although there are
inequality metrics that are decomposable (such as the Theil index, or simply the variance), I
choose not to use them here. For starters, such measures are generally far less intuitive than the
Gini index or top income shares. Second, decomposable measures merely give a decomposition
of inequality — not the decomposition. Decomposition requires deciding how to weight the
number of incomes of a given size against the size of the income. Since there are many ways
to do this, there are many equally valid decompositions of inequality. Anthony Shorrocks [29]
summarizes the problem nicely: “Inequality comparisons are invariably sensitive to the choice
of inequality index used since alternative measures tend to emphasize inequality at different
points in the distribution. Replacing one index by another will therefore almost always change
the relative significance of the between- and with-group terms”.
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Figure 15: How Hierarchy Affects Inequality

This figure compares the original hierarchy model of the United States to three differ-

ent counterfactual models. Each counterfactual model contains only one of the three

sources of income dispersion. Panel A compares the Gini index of each model, while

Panel B compares the top 1% income share. Note that since both of these inequality

metrics are not additive, the inequality in the counterfactual models will not sum to the

inequality in the original model. Panel C shows the Lorenz curve for each model, with

shaded regions indicating the 95% range. For clarity (and because it plays a negligi-

ble role determining income distribution), the intra-hierarchical dispersion model is not

shown in Panels C.
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equal to the vertical distance between the Lorenz curve and y = 1, at the point
x = 0.99.

The apparent contradiction between the Gini and top 1% results is now easy
to understand. Itis caused by an intersection between the inter-firm Lorenz curve
and the inter-hierarchical level Lorenz curve. For incomes below this intersec-
tion, inter-firm dispersion plays the most important role in shaping inequality.
However, for incomes above the intersection, hierarchy plays the most important
role in shaping inequality.

These results reinforce those in the main paper. Hierarchy is important for
shaping the tail of the distribution (the top 1%), while dispersion between firms
shapes the rest of the distribution. These results also demonstrate the pitfalls
of using a single metric to quantify inequality. No single metric can capture all
of the information in a Lorenz curve. The Gini index places an emphasis on the
body of the distribution, while top income fraction metrics capture the dynamics
of the tail. The hierarchy model suggest that when we study top income shares,
we are studying the effects of firm hierarchy.
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